
RTCBot Documentation
Release 0.2.4

Daniel Kumor

Jul 24, 2023

CONTENTS

1 Documentation 3
1.1 Installing RTCBot . 3
1.2 Tutorials & Examples . 5
1.3 API Documentation . 51

2 Indices and tables 141

Python Module Index 143

Index 145

i

ii

RTCBot Documentation, Release 0.2.4

RTCBot’s purpose is to provide a set of tutorials and simple modules that help in developing remote-controlled robots
in Python, with a focus on the Raspberry Pi.

The tutorials start from a basic connection between a Raspberry Pi and Browser, and encompass creating a video-
streaming robot controlled entirely over a 4G mobile connection, all the way to a powerful system that offloads complex
computation to a desktop PC in real-time.

All communication happens through WebRTC, using Python 3’s asyncio and the wonderful aiortc library, meaning that
your robot can be controlled both from the browser and through Python, even when it is not connected to your local
network.

CONTENTS 1

https://en.wikipedia.org/wiki/WebRTC
https://aiortc.readthedocs.io/en/latest/index.html

RTCBot Documentation, Release 0.2.4

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Installing RTCBot

RTCBot uses some very powerful libraries that have not yet made it to the standard repositories. This can make it a bit
difficult to install on some systems.

It is recommended that you first install it and try the examples on a Raspberry Pi or Ubuntu machine, since there might
still be some bugs on other operating systems.

1.1.1 Raspbian

RTCBot requires several dependencies which are best installed using apt-get:

sudo apt-get install python3-numpy python3-cffi python3-aiohttp \
libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev \
libswscale-dev libswresample-dev libavfilter-dev libopus-dev \
libvpx-dev pkg-config libsrtp2-dev python3-opencv pulseaudio

Then, you can complete the installation with pip:

sudo pip3 install rtcbot

Warning: You might need to reboot your Pi for RTCBot to work! If RTCBot freezes when starting microphone
or speaker, it means that you need to start PulseAudio.

Note: It is recommended that you use the Pi 4 with RTCBot. While it was tested to work down to the Raspberry Pi 3B,
it was observed to have extra latency, since the CPU had difficulty keeping up with encoding the video stream while
processing controller input. This is because RTCBot currently cannot take advantage of the Pi’s hardware acceleration,
meaning that all video encoding is done in software.

Note: These instructions were made with reference to Raspbian Buster. While the library does work on Raspbian
Stretch, you’ll need to install aiohttp through pip, and avoid installing opencv.

3

RTCBot Documentation, Release 0.2.4

1.1.2 Ubuntu

RTCbot requires several dependencies which are best installed using apt-get:

sudo apt-get install python3-numpy python3-cffi python3-aiohttp \
libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev \
libswscale-dev libswresample-dev libavfilter-dev libopus-dev \
libvpx-dev pkg-config libsrtp2-dev python3-opencv pulseaudio

Then, you can complete the installation with pip:

sudo pip3 install rtcbot

Warning: You might need to reboot, or manually start PulseAudio if it was not previously installed. If RTCBot
freezes when starting microphone or speaker, it means that PulseAudio is not running.

1.1.3 Mac

To install on Mac, you will want a modern python 3 (either through MiniConda or Homebrew), and have Xcode’s
development tools installed. Then, you can run:

brew install ffmpeg opus libvpx pkg-config
conda install opencv
pip install rtcbot

Note: If you have trouble installing OpenCV, you can skip it, or create a new conda environment.

1.1.4 Windows

Installing on Windows is pretty involved, since you need to manually compile one of the required Python libraries.
Nevertheless, if you enjoy a challenge, you can start with setting up Miniconda, after which you can install the basic
requirements:

conda install aiohttp cffi numpy
conda install -c conda-forge av opencv

Note: If you have trouble installing OpenCV, you can skip it, or create a new conda environment.

The library that enables RTCBot to use WebRTC, aiortc, must be compiled from scratch, since no builds are available.
To do so, you’ll need the Visual Studio C++ Build Tools, and follow these steps:

1. Download and extract the latest aiortc source code

2. Download and extract the msvc15 build of libopus into the aiortc folder, so that its lib and include directories are
right by setup.py

3. Download and extract the msvc15 build of libvpx same as libopus (the include and lib folders should merge while
extracting)

4. Build the extension:

4 Chapter 1. Documentation

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://visualstudio.microsoft.com/downloads/
https://github.com/aiortc/aiortc/releases
https://github.com/ShiftMediaProject/opus/releases
https://github.com/ShiftMediaProject/libvpx/releases

RTCBot Documentation, Release 0.2.4

python setup.py build_ext --include-dirs=./include --library-dirs=./lib/x64

5. Install aiortc:

python setup.py install

6. Go to the bin/x64 folder, take the vpx and opus dll files, and copy them to
C:UsersUsernameAnaconda3Librarybin

Finally, run:

pip install rtcbot

1.2 Tutorials & Examples

The tutorials will lead you through creating remote control software for your own robot.

Each tutorial builds upon the previous one’s code, so it is important to go in order.

The full code for each of the tutorials can be seen in the examples directory.

1.2.1 RTCBot Basics

This tutorial will teach you the fundamentals of using RTCBot for your projects. RTCBot is a Python 3 asyncio library,
meaning that it is meant to run in an event loop.

Asyncio Basics

The most basic asyncio program is the following:

import asyncio

Run the event loop
asyncio.get_event_loop().run_forever()

You can exit the program with CTRL+C. Right now, the program does nothing, just runs in a loop. Let’s fix that:

import asyncio

async def myfunction():
while True:

await asyncio.sleep(1)
print("1 second passed")

asyncio.ensure_future(myfunction())
asyncio.get_event_loop().run_forever()

This will print “1 second passed” each second.

Notice that myfunction is run in an infinite loop. The utility of an event loop is that you can run many functions
concurrently, which behaves as if your program was running with many threads at once:

1.2. Tutorials & Examples 5

https://github.com/dkumor/rtcbot/tree/master/examples
https://docs.python.org/3/library/asyncio.html

RTCBot Documentation, Release 0.2.4

import asyncio

async def myfunction1():
while True:

await asyncio.sleep(1)
print("1 second passed")

async def myfunction2():
while True:

await asyncio.sleep(2)
print("2 seconds passed")

asyncio.ensure_future(myfunction1())
asyncio.ensure_future(myfunction2())
asyncio.get_event_loop().run_forever()

The key here is the await keyword, used in an async function (called a coroutine). The await asyncio.sleep(1)
command pauses execution of the function until one second has passed, allowing the event loop to spend time running
the other function.

This means that the event loop is a good way to program where multiple things need to happen in response to events,
such as incoming data, or timers, which is precisely the situation in a robot.

RTCBot is a set of tools allowing you to easily use an asyncio event loop to pass information between parts of your
robot.

To learn more about asyncio, it is recommended that you look at a more in-depth tutorial here.

View a Video Feed

To introduce you to the basic concepts of RTCBot, we will start with the simplest task, viewing a webcam video feed:

import asyncio
from rtcbot import CVCamera, CVDisplay

camera = CVCamera()
display = CVDisplay()

@camera.subscribe
def onFrame(frame):

print("got video frame")
display.put_nowait(frame)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

The camera might take several seconds to initialize, but after it finishes, a window with a live feed of your webcam will
pop up.

The CVCamera and CVDisplay objects use OpenCV in the background to process frames. The camera.subscribe
function allows you to subscribe to video frames incoming from the webcam, firing the onFrame function 30 times a

6 Chapter 1. Documentation

https://www.blog.pythonlibrary.org/2016/07/26/python-3-an-intro-to-asyncio/

RTCBot Documentation, Release 0.2.4

second with numpy arrays containing BGR images captured by the camera. The put_nowait function is then used to
send the frame to the window where the image is displayed.

These two functions are part of RTCBot’s core abilities. Every producer of data (like CVCamera) has a subscribe()
method, and every consumer of data (like CVDisplay) has a put_nowait method to insert data.

Note: If you are using the official Raspberry Pi camera, you should replace CVCamera with PiCamera.

Warning: CVDisplay does not work on Mac due to issues with threading in the display toolkit - if using a Mac,
you’ll have to wait for the video streaming tutorial to view the video feed!

Subscriptions

Using a callback function with the subscribe method is not the only way to get data out of a data-producing object.
The subscribe method is also able to create what is called a subscription.

To understand subscriptions, let’s take a quick detour to python Queues:

import asyncio

An asyncio Queue has put_nowait and get coroutine
q = asyncio.Queue()

Sends data each second
async def sender():

while True:
await asyncio.sleep(1)
q.put_nowait("hi!")

Receives the data
async def receiver():

while True:
data = await q.get()
print("Received:", data)

asyncio.ensure_future(sender())
asyncio.ensure_future(receiver())
asyncio.get_event_loop().run_forever()

Here, the sender function sends data, and the receiver awaits for incoming data, and prints it. Notice how the queue
had a get coroutine from which data could be awaited.

We can use the subscribe method in a similar way to the above code snippet. When run without an argument,
subscribe actually returns a subscription, which CVCamera automatically keeps updated with new video frames as
they come in:

import asyncio
from rtcbot import CVCamera, CVDisplay

camera = CVCamera()
display = CVDisplay()

(continues on next page)

1.2. Tutorials & Examples 7

https://en.wikipedia.org/wiki/NumPy

RTCBot Documentation, Release 0.2.4

(continued from previous page)

frameSubscription = camera.subscribe()

async def receiver():
while True:

frame = await frameSubscription.get()
display.put_nowait(frame)

asyncio.ensure_future(receiver())

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

This program displays a live video feed, just like the previous version.

The receiver function is just running put_nowait on each frame received from the subscription. This can be done
automatically using the putSubscription method, making this a shorthand for the above program:

import asyncio
from rtcbot import CVCamera, CVDisplay

camera = CVCamera()
display = CVDisplay()

frameSubscription = camera.subscribe()
display.putSubscription(frameSubscription)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

Finally, the camera object has a get coroutine, meaning that it can be passed into putSubscription directly:

import asyncio
from rtcbot import CVCamera, CVDisplay

camera = CVCamera()
display = CVDisplay()

display.putSubscription(camera)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

8 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Generalizing to Audio

The above code examples all created a video stream, and displayed it in a window. RTCBot uses exactly the same API
for everything. This means that we can trivially add audio to the previous example:

import asyncio
from rtcbot import CVCamera, CVDisplay, Microphone, Speaker

camera = CVCamera()
display = CVDisplay()
microphone = Microphone()
speaker = Speaker()

display.putSubscription(camera)
speaker.putSubscription(microphone)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()
microphone.close()
speaker.close()

Here, a video stream should be displayed in a window, and all microphone input should be playing in your headphones
(or speakers).

Summary

This tutorial introduced the basics of RTCBot, with a focus on the fundamentals:

1. Every data producer has the subscribe method and get coroutine

2. Every data consumer has a putSubscription method and a put_nowait method

3. putSubscription takes any object with a get coroutine

4. Subscribe can also be used for direct callbacks, or with custom subscriptions.

Extra Notes

Each producer can have multiple subscriptions active at the same time. This code shows two different windows with
the same video feed:

import asyncio
from rtcbot import CVCamera, CVDisplay

camera = CVCamera()
display = CVDisplay()
display2 = CVDisplay()

display.putSubscription(camera)
subscription2 = camera.subscribe()
display2.putSubscription(subscription2)

(continues on next page)

1.2. Tutorials & Examples 9

RTCBot Documentation, Release 0.2.4

(continued from previous page)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()
display2.close()

The get coroutine of camera behaves as a single default subscription, so it can only be used by one display (it
returns each frame once). The subscribe function allows creating an arbitrary number of independent subscrip-
tions/callbacks.

1.2.2 WebRTC Basics

This example will show the absolute basics involved with establishing a real-time connection between Python and your
browser.

You can run this example entirely on your Raspberry Pi, or use a browser on a desktop or laptop to connect to the Pi.
To find your Pi’s IP address, run ip address in a terminal, which should display connection info, including an ip
address, like 192.168.1.24.

Set up a Basic Server

To start off, we want to create an aiohttp server, which will host the html and javascript for the browser.

basic.py
from aiohttp import web
routes = web.RouteTableDef()

@routes.get("/")
async def index(request):

return web.Response(content_type="text/html", text='''
<html>

<head>
<title>RTCBot: Basic</title>

</head>
<body style="text-align: center;padding-top: 30px;">

<h1>Click the Button</h1>
<button type="button" id="mybutton">Click me!</button>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var mybutton = document.querySelector("#mybutton");
mybutton.onclick = function() {

console.log("I was just clicked!");
};

</script>
</body>

</html>
''')

(continues on next page)

10 Chapter 1. Documentation

https://aiohttp.readthedocs.io/en/stable/

RTCBot Documentation, Release 0.2.4

(continued from previous page)

app = web.Application()
app.add_routes(routes)
web.run_app(app)

You can now run python3 basic.py, and navigate your browser to http://localhost:8080 or http://<pi
ip>:8080. Try clicking on the button to make sure that a message shows up in the browser console, and make sure
that no errors show up.

Screenshot
of the webpage generated by html code above.

Talking to Python from the Browser

With a basic server set up, we now add the RTCBot library both to our python and to our javascript code, and establish
a WebRTC data connection between the two

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS

For this example, we use just one global connection
conn = RTCConnection()

@conn.subscribe
def onMessage(msg): # Called when each message is sent

print("Got message:", msg)
(continues on next page)

1.2. Tutorials & Examples 11

RTCBot Documentation, Release 0.2.4

(continued from previous page)

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text="""

<html>
<head>

<title>RTCBot: Data Channel</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<h1>Click the Button</h1>
<button type="button" id="mybutton">Click me!</button>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

var mybutton = document.querySelector("#mybutton");

(continues on next page)

12 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

mybutton.onclick = function() {
conn.put_nowait("Button Clicked!");

};
</script>

</body>
</html>
""")

async def cleanup(app=None):
await conn.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

Note: If you use Safari, you might want to add an additional adapter script to the head element to fix connection issues
when running locally:

<script crossorigin src="https://webrtc.github.io/adapter/adapter-latest.js"></script>

The above example establishes a WebRTC connection from the browser to python, and sends a “Button Clicked!”
message to python each time the button is clicked in the browser.

Screenshot of the messages received by Python when the button is clicked

The code might be a bit confusing at first, so let’s split it up into its basic components:

from rtcbot import RTCConnection, getRTCBotJS

conn = RTCConnection() # For this example, we use just one global connection

@conn.subscribe
def onMessage(msg): # Called when messages received from browser

print("Got message:", msg)

This piece of code creates a single global connection for our program. We are assuming only one person is connecting
to our robot at a time. The onMessage function is then subscribed to messages coming in through the connection.

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")

(continues on next page)

1.2. Tutorials & Examples 13

https://github.com/dkumor/rtcbot/issues/22

RTCBot Documentation, Release 0.2.4

(continued from previous page)

async def rtcbotjs(request):
return web.Response(content_type="application/javascript", text=getRTCBotJS())

For convenience, the RTCBot javascript library can be accessed directly by calling getRTCBotJS. This allows you to
directly host a version of the library guaranteed to be compatible with your code. The above code lets you add the
RTCBot javascript to your html:

<script src="/rtcbot.js"></script>

The next python-based piece is the code that sets up a WebRTC connection:

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

We will create what is called an “offer” in the browser, and POST it to /connect, which will create a response, and
send back the information necessary to complete the connection.

Finally, on application exit, we close the connection:

async def cleanup(app=None):
await conn.close()

app.on_shutdown.append(cleanup)

Next, let’s look at the javascript:

var conn = new rtcbot.RTCConnection();

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {
method: "POST",
cache: "no-cache",
body: JSON.stringify(offer),

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

This code uses the javascript version of RTCConnection, which is used in exactly the same way as its Python counter-
part. First, a global connection conn is created. When connecting, it generates an offer, which is POSTed to the server
code, and the server’s response is used to complete the connection.

Finally, we replace the original console.log with a conn.put_nowait to send the message to Python instead (re-
member from the previous tutorial that put_nowait is used everywhere in RTCBot to insert/send data):

14 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

var mybutton = document.querySelector("#mybutton");
mybutton.onclick = function () {
conn.put_nowait("Button Clicked!");

};

And there you go! That is all that’s required to create a full WebRTC connection.

A bit about WebRTC

To understand what is happening in the above code, it is important to understand the basics of WebRTC, which is the
technology used for connections in rtcbot. If you are familiar with WebRTC, feel free to skip this section.

WebRTC’s core goal is fast peer-to-peer communication between clients. An example of this is video chat. Suppose
you and your friend both connect to a web server to talk with each other. The video from your friend’s webcam first
travels to the server, and then is forwarded from the server to you. This is not ideal - if the server is in another country,
your video connection would have a lot of latency, since it needs to travel a large distance - even if you and your friend
are connected to the same wifi!

WebRTC fixes this by trying to establish a direct connection between you and your friend - with WebRTC, the video
signal would never even leave your local network, giving high quality and very low latency communication. The
remote server is only used to help create the connection. Furthermore, the protocol includes mechanisms for passing
connections through firewalls, and other complex network configurations.

The above technology is unimportant to us at the moment, since we will connect directly to the server anyways (no
intermediate hops), but will become relevant once we try controlling the robot over a 4G connection, where the server
and peer become decoupled.

Even without using the above benefits, WebRTC is a better fit than something like a websocket for controlling a robot,
since it is designed from the ground up for very low latency and high throughput communication. Furthermore, it
natively supports video, with video stream quality adjusting for network speed. This results in a robust and fast con-
nection.

Connection Setup

Unfortunately, establishing a WebRTC connection between a local device (such as your browser) and the remote device
(robot) can be a bit involved. Three things need to happen:

1. The local device prepares the type of data it needs to be able to send or accept (raw data, video, audio, etc)

2. The local device needs to gather information about how others can connect to it, such that this data can be sent
efficiently. For example, things on your local network could possibly talk with each other using local addresses,
like 192.168.1.153. Other times, they must go over the internet, where you have a different IP. The device
does some setup, and gathers all the ways that the peer could connect to it. These candidate connection methods
are called ICE Candidates.

3. The resulting information needs to be sent to the remote device (robot)

4. The remote device (robot) needs to do the same thing, sending back its own information.

5. Finally, the two sides use this information to create a direct connection

Steps 3 and 4 involve a “Signaling Server”, which sends this info from one device to the other. Right now, we don’t
separate out the signaling server from our python code. That will come in a later tutorial.

1.2. Tutorials & Examples 15

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity#ICE_candidates

RTCBot Documentation, Release 0.2.4

Sending JSON to Python and Back

In the previous example, we sent a string, one way: from the browser to Python. In the interest of completeness, we
can modify the example given above to both send and receive JSON on button press:

The first modification we make is subscribing to incoming messages in javascript,

conn.subscribe((m) => console.log("Received from python:", m));

. . . and sending messages as json:

var mybutton = document.querySelector("#mybutton");
mybutton.onclick = function () {
conn.put_nowait({ data: "ping" });

};

The next modification is receiving the json in Python, and sending back a message:

@conn.subscribe
def onMessage(msg): # Called when messages received from browser

print("Got message:", msg["data"])
conn.put_nowait({"data": "pong"})

Notice that RTCBot has direct json support, converting it to Python dicts and javascript objects automatically as the
messages are received.

The full code is therefore:

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS

conn = RTCConnection() # For this example, we use just one global connection

@conn.subscribe
def onMessage(msg): # Called when messages received from browser

print("Got message:", msg["data"])
conn.put_nowait({"data": "pong"})

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
(continues on next page)

16 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

async def index(request):
return web.Response(

content_type="text/html",
text="""

<html>
<head>

<title>RTCBot: Data Channel</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<h1>Click the Button</h1>
<button type="button" id="mybutton">Click me!</button>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

conn.subscribe(m => console.log("Received from python:", m));

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

var mybutton = document.querySelector("#mybutton");
mybutton.onclick = function() {

conn.put_nowait({ data: "ping" });
};

</script>
</body>

</html>
""")

async def cleanup(app=None):
await conn.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)

(continues on next page)

1.2. Tutorials & Examples 17

RTCBot Documentation, Release 0.2.4

(continued from previous page)

web.run_app(app)

Summary

This tutorial introduced the RTCConnection object, which can be used both from Python and from javascript to create
a WebRTC connection.

1. You create an offer with conn.getLocalDescription()

2. You create a response by passing a previously created offer to conn2.getLocalDescription(offer)

3. You set the response from the second connection with conn.setRemoteDescription(response)

With that, a connection between conn and conn2 is established. Both in javascript and in Python you can use
put_nowait and subscribe to send and receive messages, respectively.

Extra Notes

The javascript version of RTCConnection tries to be as similar as possible to the Python version. However, it is
not as powerful as the Python version, allowing only callback subscriptions to receive messages, and only allowing
put_nowait to send them, rather than allowing one to putSubscription, as can be done in the Python version.

Also, we only created the RTCConnection globally for simplicity in the tutorial. In real apps, you will want to create
connections inside the /connect handler to be able to handle multiple clients, or even a single client connecting
multiple times.

1.2.3 Streaming Video

In the previous tutorial, a data connection was created between your python program and a browser, allowing to send
messages back and forth. This tutorial will build upon the previous one’s code, culminating in a 2-way video and audio
connection, where the Python code displays the video stream it gets from your browser, and the browser displays the
video stream from the server.

You should use a browser on your laptop or desktop for this one, and put the server on a Raspberry Pi if you want to
try streaming from the PiCamera.

Skeleton Code

If you have not done so yet, you should look at the previous tutorial, where the basics of an RTCConnection are
explained. For the skeleton of this part, the button from the previous tutorial was removed, and replaced with a video
element. Also removed was all code involving messages, to keep this tutorial focused entirely on video.

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS

For this example, we use just one global connection
conn = RTCConnection()

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")

(continues on next page)

18 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

async def rtcbotjs(request):
return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text=r"""

<html>
<head>

<title>RTCBot: Skeleton</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline muted controls></video>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

</html>
""")

async def cleanup(app=None):
await conn.close()

(continues on next page)

1.2. Tutorials & Examples 19

RTCBot Documentation, Release 0.2.4

(continued from previous page)

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

This code establishes a WebRTC connection, and nothing else. It can be seen as a minimal example for RTCBot.

Streaming Video from Python

The first thing we’ll do is send a video stream from a webcam to the browser. If on a desktop or laptop, you should use
CVCamera, and if on a Raspberry Pi with the camera module, use PiCamera instead - they get their video differently,
but behave identically.

All you need is to add a couple lines of code to the skeleton to get a fully-functional video stream:

from aiohttp import web
routes = web.RouteTableDef()

-from rtcbot import RTCConnection, getRTCBotJS
+from rtcbot import RTCConnection, getRTCBotJS, CVCamera

+# Initialize the camera
+camera = CVCamera()

For this example, we use just one global connection
conn = RTCConnection()

+# Send images from the camera through the connection
+conn.video.putSubscription(camera)

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text=r"""

<html>
<head>

<title>RTCBot: Skeleton</title>
(continues on next page)

20 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

<script src="/rtcbot.js"></script>
</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline muted controls></video>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

+ // When the video stream comes in, display it in the video element
+ conn.video.subscribe(function(stream) {
+ document.querySelector("video").srcObject = stream;
+ });

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

</html>
""")

async def cleanup(app=None):
await conn.close()

+ camera.close() # Singletons like a camera are not awaited on close

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

One major difference between javascript and Python, is that the audio/video subscribe in javascript is only called
once, and returns a video stream object. In Python, the same function would get called on each video frame.

Also, remember to subscribe/put all subscriptions into conn before initializing the connection with
getLocalDescription. This is because getLocalDescription uses knowledge of which types of streams
you want to send and receive to construct its offer and response.

1.2. Tutorials & Examples 21

RTCBot Documentation, Release 0.2.4

Note: In some cases you will need to click play in the browser before the video starts.

Adding Audio

Warning: Be aware that a Pi 3 with USB microphone might struggle a bit sending both audio and video at the
same time. Try the code on your desktop/laptop or a Pi 4 first to make sure it works before attempting use with the
Pi 3.

Based on what you know of RTCBot so far, and knowing that you can use a microphone with the Microphone class,
do you think you can figure out audio just looking at the video code above?

The modifications to add audio use exactly the same ideas:

from rtcbot import RTCConnection, getRTCBotJS, CVCamera, Microphone

camera = CVCamera()
mic = Microphone()

conn = RTCConnection()
conn.video.putSubscription(camera)
conn.audio.putSubscription(mic)

Also, don’t forget to close the microphone at the end with mic.close()!

On the browser side, we add an <audio autoplay></audio> element right after the <video> element, and update
the javascript:

var conn = new RTCConnection();

conn.video.subscribe(function (stream) {
document.querySelector("video").srcObject = stream;

});
conn.audio.subscribe(function (stream) {
document.querySelector("audio").srcObject = stream;

});

Browser to Python

Thus far, we used Python to stream video and audio to the browser, which is the main use case in a robot. However,
RTCBot can handle streaming both ways. Since it is assumed that you are at a single computer, we can’t stream from
Python and the browser at the same time (both will try to use the same webcam). We will switch the stream directions
instead.

This bears repeating, so let’s reiterate a bit of the basics of RTCBot’s python API:

• Anything that outputs data has a subscribe method

• Anything that takes in data has a putSubscription method, which takes in a subscription:
putSubscription(x.subscribe())

22 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

• An RTCConnection conn has both outputs and inputs for messages sent through the connection. Furthermore,
it also has video and audio streams conn.video and conn.audio, which also can be used as both inputs and
outputs.

With this in mind, reversing the stream direction is a simple matter:

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS, CVDisplay, Speaker

display = CVDisplay()
speaker = Speaker()

For this example, we use just one global connection
conn = RTCConnection()
display.putSubscription(conn.video.subscribe())
speaker.putSubscription(conn.audio.subscribe())

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text=r"""

<html>
<head>

<title>RTCBot: Skeleton</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline controls></video> <audio autoplay></audio>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

async function connect() {

let streams = await navigator.mediaDevices.getUserMedia({audio: true,
→˓ video: true});

conn.video.putSubscription(streams.getVideoTracks()[0]);
(continues on next page)

1.2. Tutorials & Examples 23

RTCBot Documentation, Release 0.2.4

(continued from previous page)

conn.audio.putSubscription(streams.getAudioTracks()[0]);

let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

</html>
""")

async def cleanup(app=None):
await conn.close()
display.close()
speaker.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

In the above code, instead of CVCamera and Microphone, CVDisplay and Speaker are used. In the javascript, we
moved the subscribing code to the connect function, because getUserMedia is an asynchronous function, and cannot
be awaited outside an async function (like connect).

Summary

This tutorial introduced video and audio streaming over WebRTC. Everything here relied on the RTCConnection
object conn, which can be initialized both from browser and Python.

1. conn.video is both a data producer and a consumer, allowing both to subscribe to remote video and send video
streams

2. conn.audio behaves in exactly the same way as conn.video

Put together with messages that can be sent directly using conn (see previous tutorial), this allows you to send data
back and forth however you like.

24 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Extra Notes

While the RTCConnection was created globally here, but should generally be created for each connection, the cam-
era/microphone/speaker/display objects should be used as singletons, initialized once at the beginning of the program,
and closed when the program is exiting.

1.2.4 Keyboard & Xbox Controller

It is time to move towards the “bot” portion of RTCBot: robot control. With the previous tutorials, a robot’s webcam
can be streamed to the browser. Now, it is time to send commands from the keyboard or Xbox controller to your robot.
This will allow true remote control, with you watching a video feed on your computer, and controlling the robot with
your keyboard, while the robot roams around your house.

Make sure to go through the previous tutorial before starting this one.

Skeleton Code

Just like the previous tutorials, we start with the basic skeleton that just establishes a WebRTC connection between
Python and the browser.

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS

conn = RTCConnection()

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text=r"""

<html>
<head>

<title>RTCBot: Skeleton</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline controls></video> <audio autoplay></audio>
<p>

(continues on next page)

1.2. Tutorials & Examples 25

RTCBot Documentation, Release 0.2.4

(continued from previous page)

Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

</html>
""")

async def cleanup(app=None):
await conn.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

Keyboard

We now add keyboard support. This is done with the rtcbot.Keyboard javascript class

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS

conn = RTCConnection()

+@conn.subscribe
+def onMessage(m):
+ print("key press", m)

Serve the RTCBot javascript library at /rtcbot.js
(continues on next page)

26 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text=r"""

<html>
<head>

<title>RTCBot: Skeleton</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline controls></video> <audio autoplay></audio>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();
+ var kb = new rtcbot.Keyboard();

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

+ kb.subscribe(conn.put_nowait);

console.log("Ready!");
}
connect();

</script>
</body>

(continues on next page)

1.2. Tutorials & Examples 27

RTCBot Documentation, Release 0.2.4

(continued from previous page)

</html>
""",
)

async def cleanup(app=None):
await conn.close()

app = web.Application()
web.run_app(app)

This javascript code creates a Keyboard object in the browser, which internally uses the onkeydown and onkeyup
events to gather keyboard data. It then subscribes the put_nowait function of the connection to key events once the
connection is set up.

Running the above code gives the following output in the Python console:

======== Running on http://0.0.0.0:8080 ========
(Press CTRL+C to quit)
key press {'type': 'keydown', 'altKey': False, 'shiftKey': True, 'keyCode': 16, 'key':
→˓'Shift'}
key press {'type': 'keydown', 'altKey': False, 'shiftKey': True, 'keyCode': 72, 'key': 'H
→˓'}
key press {'type': 'keyup', 'altKey': False, 'shiftKey': True, 'keyCode': 72, 'key': 'H'}
key press {'type': 'keyup', 'altKey': False, 'shiftKey': False, 'keyCode': 16, 'key':
→˓'Shift'}
key press {'type': 'keydown', 'altKey': False, 'shiftKey': False, 'keyCode': 69, 'key':
→˓'e'}
key press {'type': 'keyup', 'altKey': False, 'shiftKey': False, 'keyCode': 69, 'key': 'e
→˓'}
key press {'type': 'keydown', 'altKey': False, 'shiftKey': False, 'keyCode': 76, 'key':
→˓'l'}
key press {'type': 'keyup', 'altKey': False, 'shiftKey': False, 'keyCode': 76, 'key': 'l
→˓'}
key press {'type': 'keydown', 'altKey': False, 'shiftKey': False, 'keyCode': 76, 'key':
→˓'l'}
key press {'type': 'keyup', 'altKey': False, 'shiftKey': False, 'keyCode': 76, 'key': 'l
→˓'}
key press {'type': 'keydown', 'altKey': False, 'shiftKey': False, 'keyCode': 79, 'key':
→˓'o'}
key press {'type': 'keyup', 'altKey': False, 'shiftKey': False, 'keyCode': 79, 'key': 'o
→˓'}

28 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Xbox Controller

The keyboard would work for controlling your robot in a pinch, but an xbox controller is more useful, since it has
analog sticks and triggers. Those will allow you fine-grained control of your robot’s speed and movement.

Thankfully, RTCBot has you covered - you only need to replace a single line in the above Keyboard code to switch to
an xbox controller:

-var kb = new rtcbot.Keyboard();
+var kb = new rtcbot.Gamepad();

Running this code gives the following Python output:

key press {'value': -0.2838831841945648, 'type': 'axis1'}
key press {'value': -0.009033478796482086, 'type': 'axis0'}
key press {'value': 0, 'type': 'axis1'}
key press {'value': 0.004119998775422573, 'type': 'axis3'}
key press {'value': 0.006103701889514923, 'type': 'axis3'}
key press {'value': -0.008697775192558765, 'type': 'axis0'}
key press {'value': 0, 'type': 'axis3'}
key press {'value': -0.009338663890957832, 'type': 'axis0'}
key press {'value': 0, 'type': 'axis0'}
key press {'value': True, 'type': 'btn0'}
key press {'value': False, 'type': 'btn0'}
key press {'value': 0.27201148867607117, 'type': 'axis2'}
key press {'value': 1, 'type': 'axis2'}
key press {'value': -1, 'type': 'axis2'}
key press {'value': -0.8708761930465698, 'type': 'axis2'}
key press {'value': -0.7945494055747986, 'type': 'axis2'}

The controller’s buttons give boolean values, and the joysticks give float values between -1 and 1. By default, the
controller is polled at 10Hz as not to overwhelm a Pi 3 with tons of data each time a joystick is moved.

Remote Control

And now, we put everything together, with a video stream sent from Python, and controls sent back from the browser.
This code directly allows you to sit at your computer and remotely control a Pi placed in a different room. We combine
the keyboard example above, with the video streaming example from the previous tutorial.

We use the WASD keys for movement, decoding the current controls in Python’s onMessage:

keystates = {"w": False, "a": False, "s": False, "d": False}

@conn.subscribe
def onMessage(m):

global keystates
if m["keyCode"] == 87: # W

keystates["w"] = m["type"] == "keydown"
elif m["keyCode"] == 83: # S

keystates["s"] = m["type"] == "keydown"
elif m["keyCode"] == 65: # A

keystates["a"] = m["type"] == "keydown"
elif m["keyCode"] == 68: # D

keystates["d"] = m["type"] == "keydown"
(continues on next page)

1.2. Tutorials & Examples 29

RTCBot Documentation, Release 0.2.4

(continued from previous page)

print({
"forward": keystates["w"] * 1 - keystates["s"] * 1,
"leftright": keystates["d"] * 1 - keystates["a"] * 1,

})

This code keeps track of which keys are currently pressed, and prints out the robot controls. Leftright is -1 on left, and
1 on right. Similarly, forward is 1 when w is pressed, and -1 when s is pressed:

{'forward': 1, 'leftright': -1}
{'forward': 0, 'leftright': -1}
{'forward': 0, 'leftright': 0}
{'forward': -1, 'leftright': 0}
{'forward': -1, 'leftright': 1}
{'forward': 0, 'leftright': 1}
{'forward': 0, 'leftright': 0}
{'forward': 1, 'leftright': 0}
{'forward': 1, 'leftright': -1}
{'forward': 0, 'leftright': -1}
{'forward': 0, 'leftright': 0}

With this, we have a fully functional remote control system! All that’s left is connecting your robot’s motors.

Full code for the above example

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, CVCamera, getRTCBotJS
cam = CVCamera()

For this example, we use just one global connection
conn = RTCConnection()
conn.video.putSubscription(cam)

keystates = {"w": False, "a": False, "s": False, "d": False}

@conn.subscribe
def onMessage(m):

global keystates
if m["keyCode"] == 87: # W

keystates["w"] = m["type"] == "keydown"
elif m["keyCode"] == 83: # S

keystates["s"] = m["type"] == "keydown"
elif m["keyCode"] == 65: # A

keystates["a"] = m["type"] == "keydown"
elif m["keyCode"] == 68: # D

keystates["d"] = m["type"] == "keydown"
print({

"forward": keystates["w"] * 1 - keystates["s"] * 1,
"leftright": keystates["d"] * 1 - keystates["a"] * 1,

})

(continues on next page)

30 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text=r"""

<html>
<head>

<title>RTCBot: Remote Control</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline controls></video> <audio autoplay></audio>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();
conn.video.subscribe(function(stream) {

document.querySelector("video").srcObject = stream;
});

var kb = new rtcbot.Keyboard();

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

kb.subscribe(conn.put_nowait);

console.log("Ready!");
}
connect();

(continues on next page)

1.2. Tutorials & Examples 31

RTCBot Documentation, Release 0.2.4

(continued from previous page)

</script>
</body>

</html>
""")

async def cleanup(app=None):
await conn.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

Summary

In this section, keyboard and gamepad control was introduced, culminating in a fully remote-controlled system where
commands were sent from browser, and a live video stream was sent to the browser.

This example can be directly extended to link to a robot’s controls - you can link the control output with your robot’s
actuators and motors in just a few lines of code!

Extra Notes

In the above examples, we used a simple event-based control scheme. For robustness, it is better to send the full state
from the browser rather than the individual events. That is, rather than sending just the keydown event, it is generally
better to process controls in javascript, and send the full state (ie: {"forward":1,"leftright":0}).

1.2.5 Connecting over 4G

Thus far, the tutorials have all had you connect directly to the robot, which meant that it had to be on your local wifi
network. In this tutorial, we will finally decouple the server and the robot.

Rather than connecting to the robot, we will have two separate Python programs. The first is a server, which will be
served at a known IP address. The second will be the robot, which connects to the server with a websocket, and waits
for the information necessary to initialize a WebRTC connection directly to your browser.

Note: The server must be accessible from the internet. Running your own server might involve a bit of configuration
in your router settings or setup of a cloud server, such as a virtual machine on DigitalOcean. You can also use the
provided server at https://rtcbot.dev to help establish connections (see below).

In a previous tutorial, we developed a connection that streamed video to the browser. This tutorial will implement
exactly the same functionality, but with the robot on a remote connection.

The browser-side code will remain unchanged - all of the work here will be in Python.

32 Chapter 1. Documentation

https://rtcbot.dev

RTCBot Documentation, Release 0.2.4

Server Code

Most of the server code is unchanged. The only difference is that we set up a listener at /ws, which will establish a
websocket connection with the robot:

ws = None # Websocket connection to the robot
@routes.get("/ws")
async def websocket(request):

global ws
ws = Websocket(request)
print("Robot Connected")
await ws # Wait until the websocket closes
print("Robot disconnected")
return ws.ws

The above code sets up a global ws variable which will hold the active connection. We then use this websocket in
the /connect handler. Instead of establishing a WebRTC connection ourselves, the server forwards the information
directly to the robot using the websocket:

Called by the browser to set up a connection
@routes.post("/connect")
async def connect(request):

global ws
if ws is None:

raise web.HTTPInternalServerError("There is no robot connected")
clientOffer = await request.json()
Send the offer to the robot, and receive its response
ws.put_nowait(clientOffer)
robotResponse = await ws.get()
return web.json_response(robotResponse)

This is all that is needed from the server - its function is simply to route the information necessary to establish the
connection directly between robot and browser. The full server code is here:

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import Websocket, getRTCBotJS

ws = None # Websocket connection to the robot
@routes.get("/ws")
async def websocket(request):

global ws
ws = Websocket(request)
print("Robot Connected")
await ws # Wait until the websocket closes
print("Robot disconnected")
return ws.ws

Called by the browser to set up a connection
@routes.post("/connect")
async def connect(request):

global ws
if ws is None:

(continues on next page)

1.2. Tutorials & Examples 33

RTCBot Documentation, Release 0.2.4

(continued from previous page)

raise web.HTTPInternalServerError("There is no robot connected")
clientOffer = await request.json()
Send the offer to the robot, and receive its response
ws.put_nowait(clientOffer)
robotResponse = await ws.get()
return web.json_response(robotResponse)

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text="""

<html>
<head>

<title>RTCBot: Remote Video</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline muted controls></video>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

conn.video.subscribe(function(stream) {
document.querySelector("video").srcObject = stream;

});

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

(continues on next page)

34 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

</html>
""")

async def cleanup(app=None):
global ws
if ws is not None:

c = ws.close()
if c is not None:

await c

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

Remote Code

For simplicity, we will just run both server and robot on the local machine. The robot connects to the server with a
websocket, and waits for the message that will allow it to initialize its WebRTC connection.

import asyncio
from rtcbot import Websocket, RTCConnection, CVCamera

cam = CVCamera()
conn = RTCConnection()
conn.video.putSubscription(cam)

Connect establishes a websocket connection to the server,
and uses it to send and receive info to establish webRTC connection.
async def connect():

ws = Websocket("http://localhost:8080/ws")
remoteDescription = await ws.get()
robotDescription = await conn.getLocalDescription(remoteDescription)
ws.put_nowait(robotDescription)
print("Started WebRTC")
await ws.close()

asyncio.ensure_future(connect())
try:

asyncio.get_event_loop().run_forever()
finally:

cam.close()
conn.close()

With these two pieces of code, you first start the server, then start the robot, and finally open http://localhost:8080
in the browser to view a video stream coming directly from the robot, even if the robot has an unknown IP.

1.2. Tutorials & Examples 35

RTCBot Documentation, Release 0.2.4

rtcbot.dev

The above example requires you to have your own internet-accessible server at a known IP address to set up the connec-
tion, if your remote code is not on your local network. The server’s only real purpose is to help establish a connection
- once the connection is established, it does not do anything.

For this reason, I am hosting a free testing server online at https://rtcbot.dev that performs the equivalent of the
following operation from the above server code:

@routes.get("/ws")
async def websocket(request):

global ws
ws = Websocket(request)
print("Robot Connected")
await ws # Wait until the websocket closes
print("Robot disconnected")
return ws.ws

Called by the browser to set up a connection
@routes.post("/connect")
async def connect(request):

global ws
if ws is None:

raise web.HTTPInternalServerError("There is no robot connected")
clientOffer = await request.json()
Send the offer to the robot, and receive its response
ws.put_nowait(clientOffer)
robotResponse = await ws.get()
return web.json_response(robotResponse)

Since the server at rtcbot.dev is open to anyone, instead of /ws and /connect, you need to choose some random
sequence of letters and numbers that will identify your connection, for example myRandomSequence11.

Once you have chosen your sequence, you can both connect your websocket and POST to https://rtcbot.dev/
myRandomSequence11:

Note: If you open https://rtcbot.dev/myRandomSequence11 in your browser, you can see if your remote code is
connected with a websocket, and optionally open a video connection.

When using rtcbot.dev, the remote connection code becomes:

async def connect():
ws = Websocket("https://rtcbot.dev/myRandomSequence11")
remoteDescription = await ws.get()
robotDescription = await conn.getLocalDescription(remoteDescription)
ws.put_nowait(robotDescription)
print("Started WebRTC")
await ws.close()

and the local browser’s connection code becomes:

let response = await fetch("https://rtcbot.dev/myRandomSequence11", {
method: "POST",
cache: "no-cache",

(continues on next page)

36 Chapter 1. Documentation

https://rtcbot.dev/myRandomSequence11

RTCBot Documentation, Release 0.2.4

(continued from previous page)

body: JSON.stringify(offer),
});

With rtcbot.dev, you no longer need your local server code to run websockets or a connection service. Its only
purpose is to give the browser the html and javascript necessary to establish a connection. We will get rid of the
browser entirely in the next tutorial.

If it doesn’t work over 4G

The above example should work for most people. However, some mobile network operators perform routing that
disallows creating a direct WebRTC connection to a mobile device over 4G. If this is your situation, you need to use
what is called a TURN server, which will forward data between the browser and robot.

Note: You can check if your mobile operator allows such connections by using your phone to create a wifi hotspot, to
which you can connect your robot. If video streaming works with the code above, you can ignore this section!

Warning: Because a TURN server essentially serves as a proxy through which an entire WebRTC connection
is routed, it can send and receive quite a bit of data - make sure that you don’t exceed your download and upload
limits!

There are two options through which to setup a TURN server: coTURN and Pion. Pion is meant to be a more simple
and temporary solution that’s easy to setup while coTURN is recommended for more permanent setups.

Setup with Pion

The Pion server is easy to set up on Windows,Mac and Linux - all you need to do is download the executable, and run
it from the command line as shown.

Linux/Mac:

chmod +x ./simple-turn-linux-amd64 # allow executing the downloaded file
export USERS='myusername=mypassword'
export REALM=my.server.ip
export UDP_PORT=3478
./simple-turn-linux-amd64 # simple-turn-darwin-amd64 if on Mac

Windows: You can run the following from powershell:

$env:USERS = "myusername=mypassword"
$env:REALM = "my.server.ip"
$env:UDP_PORT = 3478
./simple-turn-windows-amd64.exe

With the Pion server running, you will need to let both Python and Javascript know about it when creating your
RTCConnection:

from aiortc import RTCConfiguration, RTCIceServer

myConnection = RTCConnection(rtcConfiguration=RTCConfiguration([
(continues on next page)

1.2. Tutorials & Examples 37

https://github.com/coturn/coturn
https://github.com/pion/turn
https://github.com/pion/turn/releases/tag/1.0.3

RTCBot Documentation, Release 0.2.4

(continued from previous page)

RTCIceServer(urls="stun:stun.l.google.com:19302"),
RTCIceServer(urls="turn:my.server.ip:3478",

username="myusername",credential="mypassword")
]))

var conn = new rtcbot.RTCConnection(true, {
iceServers:[

{ urls: ["stun:stun.l.google.com:19302"] },
{ urls: "turn:my.server.ip:3478?transport=udp",

username: "myusername", credential: "mypassword", },
]);

Setup with coTURN

Setting up a coTURN server takes a bit more work and is only supported on Linux and Mac. The following steps will
assume a Linux system running Ubuntu.

Install coTURN and stop the coTURN service to modify config files with

sudo apt install coturn
sudo systemctl stop coturn

Edit the file /etc/default/coturn by uncommenting the line TURNSERVER_ENABLED=1. This will allow coTURN
to start in daemon mode on boot.

Edit another file /etc/turnserver.conf and add the following lines. Be sure to put your system’s public facing IP
address in place of <PUBLIC_NETWORK_IP>, your domain name in place of <DOMAIN>, and your own credentials in
place of <USERNAME> and <PASSWORD>.

listening-port=3478
tls-listening-port=5349
listening-ip=<PUBLIC_NETWORK_IP>
relay-ip=<PUBLIC_NETWORK_IP>
external-ip=<PUBLIC_NETWORK_IP>
realm=<DOMAIN>
server-name=<DOMAIN>

user=<USERNAME>:<PASSWORD>
lt-cred-mech

Note: If you are running coTURN within a local network, <DOMAIN> can be whatever you want.

Restart the coTURN service, check that it’s running, and reboot.

sudo systemctl start coturn
sudo systemctl status coturn
sudo reboot

With the coTURN server running, you will need to let both Python and Javascript know about it when creating your
RTCConnection:

38 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

from aiortc import RTCConfiguration, RTCIceServer

myConnection = RTCConnection(rtcConfiguration=RTCConfiguration([
RTCIceServer(urls="stun:stun.l.google.com:19302"),
RTCIceServer(urls="turn:<PUBLIC_NETWORK_IP>:3478",

username="myusername",credential="mypassword")
]))

var conn = new rtcbot.RTCConnection(true, {
iceServers:[

{ urls: ["stun:stun.l.google.com:19302"] },
{ urls: "turn:<PUBLIC_NETWORK_IP:3478?transport=udp",

username: "myusername", credential: "mypassword", },
]);

Note: If you are running coTURN on a local network, replace <PUBLIC_NETWORK_IP> with the public facing IP
of the system running coTURN. If coTURN is running on a server with a domain, replace <PUBLIC_NETWORK_IP>
with the domain/realm set in /etc/turnserver.conf.

With either of the options above, you should be able to stream video to your browser using 4G, even if your mobile
operator disallows direct connections.

Summary

This tutorial split up the server and robot code into distinct pieces. Also introduced was rtcbot’s websocket wrapper,
allowing you to easily establish a data-only connection. Finally, TURN servers were introduced, and instructions were
given on how to set one up if direct connections fail.

Extra Notes

Be aware that throughout these tutorials, all error handling and robustness was left out in the interest of clarity in the
fundamental program flow. In reality, you will probably want to make sure that the connection did not have an error,
and add the ability to connect and disconnect multiple times.

1.2.6 Offloading Computation

Most hobbyists can’t afford to do complex computations on their robot, because the little single-board computers (SBCs)
available for a reasonable price do not have sufficient processing power for advanced functionality. While this is slowly
changing with things like Nvidia’s Jetson Nano, there is still a large gap in power between SBCs and an average desktop.

The ideal situation would be if you could strap an entire desktop to your robot. With RTCBot, we can do the next best
thing: we can stream the robot’s inputs to a desktop, which can then perform computation, and send back commands.

In this tutorial, we will go back to a single file for both server and robot for simplicitly. We set up a connection to the
robot from Python, allowing you to control the robot with an xbox controller without a browser.

Note: While with a Raspberry Pi there might be a non-negligible delay between sending a video frame and getting back
a command, this is not a limitation of the approach, since it is possible to stream video games with barely-noticeable

1.2. Tutorials & Examples 39

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/
https://arstechnica.com/gaming/2019/03/googles-multiyear-quest-to-overcome-ids-stadia-streaming-skepticism/
https://arstechnica.com/gaming/2019/03/googles-multiyear-quest-to-overcome-ids-stadia-streaming-skepticism/

RTCBot Documentation, Release 0.2.4

lag. In particular, rtcbot currently cannot take advantage of the Pi’s hardware acceleration, meaning that all video
encoding is done in software, which ends up adding to video delay.

Python to Python Streaming

To start offloading, we get rid of the browser - we will create a connection from Python on your desktop to Python on
your robot, stream video from the robot, and stream controls from the desktop.

The robot code is identical to the code we have seen in previous tutorials. All we did was remove the browser code,
since it is not needed.

robot.py
from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, CVCamera
cam = CVCamera()
conn = RTCConnection()
conn.video.putSubscription(cam)

@conn.subscribe
def controls(msg):

print("Control message:", msg)

@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

async def cleanup(app):
await conn.close()
cam.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

Then, on the desktop, we run the following:

desktop.py

import asyncio
import aiohttp
import cv2
import json
from rtcbot import RTCConnection, Gamepad, CVDisplay

disp = CVDisplay()
g = Gamepad()
conn = RTCConnection()

(continues on next page)

40 Chapter 1. Documentation

https://arstechnica.com/gaming/2019/03/googles-multiyear-quest-to-overcome-ids-stadia-streaming-skepticism/
https://arstechnica.com/gaming/2019/03/googles-multiyear-quest-to-overcome-ids-stadia-streaming-skepticism/

RTCBot Documentation, Release 0.2.4

(continued from previous page)

@conn.video.subscribe
def onFrame(frame):

Show a 4x larger image so that it is easy to see
resized = cv2.resize(frame, (frame.shape[1] * 4, frame.shape[0] * 4))
disp.put_nowait(resized)

async def connect():
localDescription = await conn.getLocalDescription()
async with aiohttp.ClientSession() as session:

async with session.post(
"http://localhost:8080/connect", data=json.dumps(localDescription)

) as resp:
response = await resp.json()
await conn.setRemoteDescription(response)

Start sending gamepad controls
g.subscribe(conn)

asyncio.ensure_future(connect())
try:

asyncio.get_event_loop().run_forever()
finally:

conn.close()
disp.close()
g.close()

This code manually sends the connect request, and establishes a webrtc connection with the response. Also introduced
was the Python version of Gamepad. The browser version was used in a previous tutorial.

The robot code’s output is now:

======== Running on http://0.0.0.0:8080 ========
(Press CTRL+C to quit)
Control message: {'timestamp': 1553379212.684861, 'code': 'BTN_SOUTH', 'state': 1, 'event
→˓': 'Key'}
Control message: {'timestamp': 1553379212.684861, 'code': 'ABS_Y', 'state': -1, 'event':
→˓'Absolute'}
Control message: {'timestamp': 1553379213.192862, 'code': 'BTN_SOUTH', 'state': 0, 'event
→˓': 'Key'}
Control message: {'timestamp': 1553379214.14487, 'code': 'BTN_SOUTH', 'state': 1, 'event
→˓': 'Key'}
Control message: {'timestamp': 1553379214.964878, 'code': 'BTN_SOUTH', 'state': 0, 'event
→˓': 'Key'}
Control message: {'timestamp': 1553379216.172882, 'code': 'BTN_SOUTH', 'state': 1, 'event
→˓': 'Key'}
Control message: {'timestamp': 1553379216.48489, 'code': 'BTN_SOUTH', 'state': 0, 'event
→˓': 'Key'}
Control message: {'timestamp': 1553379216.872889, 'code': 'ABS_X', 'state': -11, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.884891, 'code': 'ABS_X', 'state': -64, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.892888, 'code': 'ABS_X', 'state': -95, 'event
→˓': 'Absolute'}

(continues on next page)

1.2. Tutorials & Examples 41

RTCBot Documentation, Release 0.2.4

(continued from previous page)

Control message: {'timestamp': 1553379216.904886, 'code': 'ABS_X', 'state': -158, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.912884, 'code': 'ABS_X', 'state': -599, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.924894, 'code': 'ABS_X', 'state': -1240, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.932888, 'code': 'ABS_X', 'state': -1586, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.944887, 'code': 'ABS_X', 'state': -2080, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.952887, 'code': 'ABS_X', 'state': -2689, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.964892, 'code': 'ABS_X', 'state': -3833, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.972892, 'code': 'ABS_X', 'state': -4957, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.972892, 'code': 'ABS_Y', 'state': -53, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.984889, 'code': 'ABS_X', 'state': -7944, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.984889, 'code': 'ABS_Y', 'state': -106, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379216.992891, 'code': 'ABS_X', 'state': -10170,
→˓'event': 'Absolute'}
Control message: {'timestamp': 1553379216.992891, 'code': 'ABS_Y', 'state': -137, 'event
→˓': 'Absolute'}
Control message: {'timestamp': 1553379217.004892, 'code': 'ABS_X', 'state': -12567,
→˓'event': 'Absolute'}

Warning: The output for the Gamepad object is currently different in Javascript and in Python. Make sure you
don’t mix them up!

1.2.7 Multiple Connections & Reconnecting

Thus far, all of the tutorials included a single RTCConnection object for simplicity. While it makes the code easy to
understand, it also means that refreshing the browser page, or connecting from another tab at the same time will not
work, since each RTCConnection object can only be used once.

This tutorial will show how to set up your server to handle multiple connections.

42 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Video Streaming Template

We will build upon the video-streaming tutorial. The basic template code is copied over to this tutorial, with all
references to the global RTCConnection removed:

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS, CVCamera
camera = CVCamera()

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()

WHAT GOES HERE?

return web.json_response(serverResponse)

async def cleanup(app=None):
camera.close()

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

Serve the webpage!
@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text="""

<html>
<head>

<title>RTCBot: Video</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline controls muted></video>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

conn.video.subscribe(function(stream) {
document.querySelector("video").srcObject = stream;

});

async function connect() {
let offer = await conn.getLocalDescription();

(continues on next page)

1.2. Tutorials & Examples 43

RTCBot Documentation, Release 0.2.4

(continued from previous page)

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

</html>
""",
)

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

The Connection Handler

Most of the template above is code to display the video box in a browser. We therefore focus only on the parts relevant
to this tutorial:

camera = CVCamera()

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()

WHAT GOES HERE?

return web.json_response(serverResponse)

async def cleanup(app=None):
camera.close()

Remember that thus far, all tutorials used a single global connection:

camera = CVCamera()

For this example, we use just one global connection
conn = RTCConnection()
Subscribe to the video feed

(continues on next page)

44 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

conn.video.putSubscription(camera)

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
Set up the connection
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

async def cleanup(app=None):
await conn.close()
camera.close()

This global connection can only be initialized once, so once the connect function is run, it will not work again. The
solution is to create a new RTCConnection each time connect is called. We also need to keep track of the active
connections, and subscriptions to video frames, since it is now possible for there to be multiple streams at once!

The most robust way to achieve this is to create a class wrapping the connection object, which handles preparation of
the connection as well as cleanup. The code we will use is shown here:

camera = CVCamera()

class ConnectionHandler:
active_connections = [] # This array keeps track of all current connections

def __init__(self):
self.conn = RTCConnection()

Subscribe to the video frames - each connection gets its own subscription
global camera
self.videoSubscription = camera.subscribe()
self.conn.video.putSubscription(self.videoSubscription)

Perform cleanup when the connection is closed
self.conn.onClose(self.close)

Add this connection to the list of active connections
ConnectionHandler.active_connections.append(self)

def close(self):
When done, unsubscribe from the video feed
global camera
camera.unsubscribe(self.videoSubscription)

Remove from list of active connections
ConnectionHandler.active_connections.remove(self)

async def getLocalDescription(self, clientOffer):
Pass the connection setup result
return await self.conn.getLocalDescription(clientOffer)

@staticmethod
(continues on next page)

1.2. Tutorials & Examples 45

RTCBot Documentation, Release 0.2.4

(continued from previous page)

async def cleanup():
Close all active connections, making sure to use an array copy [:]
since closing removes the item from the array!
for c in ConnectionHandler.active_connections[:]:

await c.conn.close()

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
conn = ConnectionHandler() # Our ConnectionHandler class!
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

async def cleanup(app=None):
await ConnectionHandler.cleanup() # When the app is closed, close all connections
camera.close()

Warning: Each video stream is encoded separately, so a Raspberry Pi might struggle with multiple simultaneous
connections.

When building a robot, you might want to allow only a single active connection at a time (which will control the bot!),
which can be achieved by checking the number of active connections before creating a new ConnectionHandler.

The class-based approach allows easy extension. For example, to receive control messages from the browser, an
onMessage function can be added:

class ConnectionHandler:
def __init__(self):

...

self.conn.subscribe(self.onMessage)

def onMessage(self,msg):

print(msg)

46 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Summary

This tutorial showed how to allow multiple connections and reconnecting with RTCBot. If using RTCBot to build a
robot, it is recommended that you use a similar approach, rather than a single global connection.

1.2.8 Running Blocking Code

RTCBot uses python’s asyncio event loop. This means that Python runs in a loop, handling events as they come in, all
in a single thread. Any long-running operation must be specially coded to be async, so that it does not block operation
of the event loop.

A Common Issue

Suppose that you have a sensor that you want to use with RTCBot. Your goal is to retrieve values from the sensor, and
then send the results to the browser.

We will use the function get_sensor_data to represent a sensor which takes half a second to retrieve data:

import time
import random

def get_sensor_data():
time.sleep(0.5) # Represents an operation that takes half a second to complete
return random.random()

We will base this code on the original single-connection video-streaming tutorial for simplicity. We will send the sensor
reading once a second:

from aiohttp import web

routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS, CVCamera

camera = CVCamera()
For this example, we use just one global connection
conn = RTCConnection()
conn.video.putSubscription(camera)

+import time
+import random
+import asyncio
+
+
+def get_sensor_data():
+ time.sleep(0.5) # Represents an operation that takes half a second to complete
+ return random.random()
+
+
+async def send_sensor_data():
+ while True:
+ await asyncio.sleep(1)

(continues on next page)

1.2. Tutorials & Examples 47

RTCBot Documentation, Release 0.2.4

(continued from previous page)

+ data = get_sensor_data()
+ conn.put_nowait(data) # Send data to browser
+
+
+asyncio.ensure_future(send_sensor_data())

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

This sets up the connection
@routes.post("/connect")
async def connect(request):

clientOffer = await request.json()
serverResponse = await conn.getLocalDescription(clientOffer)
return web.json_response(serverResponse)

@routes.get("/")
async def index(request):

return web.Response(
content_type="text/html",
text="""

<html>
<head>

<title>RTCBot: Video</title>
<script src="/rtcbot.js"></script>

</head>
<body style="text-align: center;padding-top: 30px;">

<video autoplay playsinline muted controls></video>
<p>
Open the browser's developer tools to see console messages (CTRL+SHIFT+C)
</p>
<script>

var conn = new rtcbot.RTCConnection();

conn.video.subscribe(function(stream) {
document.querySelector("video").srcObject = stream;

});

+ conn.subscribe(m => console.log("Received from python:", m));
+

async function connect() {
let offer = await conn.getLocalDescription();

// POST the information to /connect
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

(continues on next page)

48 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

});

await conn.setRemoteDescription(await response.json());

console.log("Ready!");
}
connect();

</script>
</body>

</html>
""",
)

async def cleanup(app=None):
await conn.close()
camera.close()

conn.onClose(cleanup)

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app)

If you try this code, the video will freeze for half a second each second, while the sensor is being queried (i.e. while
time.sleep(0.5) is being run). This is because all of RTCBot’s tasks happen in the same thread, and while reading
the sensor, RTCBot is not sending video frames!

To fix this issue, the sensor needs to be read in a different thread, so that the event loop is not blocked. The sensor data
then needs to be moved to the main thread, where it can be used by rtcbot.

Producing Data in Another Thread

Thankfully, RTCBot has built-in helper classes that set everything up for you here. The
ThreadedSubscriptionProducer runs in a system thread, allowing arbitrary blocking code, and has built-in
mechanisms that let you queue up data for use from the asyncio event loop.

The code that blocks the connection:

import time
import random
import asyncio

def get_sensor_data():
time.sleep(0.5) # Represents an operation that takes half a second to complete
return random.random()

async def send_sensor_data():
while True:

(continues on next page)

1.2. Tutorials & Examples 49

RTCBot Documentation, Release 0.2.4

(continued from previous page)

await asyncio.sleep(1)
data = get_sensor_data()
conn.put_nowait(data) # Send data to browser

asyncio.ensure_future(send_sensor_data())

can be fixed by moving the sensor-querying code into a ThreadedSubscriptionProducer:

import time
import random
import asyncio

from rtcbot.base import ThreadedSubscriptionProducer

def get_sensor_data():
time.sleep(0.5) # Represents an operation that takes half a second to complete
return random.random()

class MySensor(ThreadedSubscriptionProducer):
def _producer(self):

self._setReady(True) # Notify that ready to start gathering data
while not self._shouldClose: # Keep gathering until close is requested

time.sleep(1)
data = get_sensor_data()
Send the data to the asyncio thread,
so it can be retrieved with await mysensor.get()
self._put_nowait(data)

self._setReady(False) # Notify that sensor is no longer operational

mysensor = MySensor()

async def send_sensor_data():
while True:

data = await mysensor.get() # we await the output of MySensor in a loop
conn.put_nowait(data)

asyncio.ensure_future(send_sensor_data())

...

async def cleanup(app=None):
await conn.close()
camera.close()
mysensor.close()

50 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Consuming Data in Another Thread

RTCBot has an equivalent mechanism for ingesting data - you can retrieve data, and then use it to control things with
blocking code.

import time

def set_output_value(value):
time.sleep(0.5) # Represents an operation that takes half a second to complete
print(value)

from rtcbot.base import ThreadedSubscriptionConsumer, SubscriptionClosed

class MyOutput(ThreadedSubscriptionConsumer):
def _consumer(self):

self._setReady(True)
while not self._shouldClose:

try:
data = self._get()
set_output_value(data)

except SubscriptionClosed:
break

self._setReady(False)

myoutput = MyOutput()

You can now use myoutput.put_nowait in rtcbot to queue up data, which will be retrieved from the consumer thread.

Summary

This tutorial introduced the ThreadedSubscriptionProducer and ThreadedSubscriptionConsumer classes,
which allow you to use blocking code with the asyncio event loop. These functions allow handling the connection
in the main thread, and doing all actions that might take a while in separate threads.

1.3 API Documentation

RTCBot includes code that simplifies certain tasks. For example, it handles getting frames from your camera in a way
easily compatible with asyncio, or sending commands to an Arduino efficiently.

1.3.1 RTC Connection

API

class rtcbot.connection.ConnectionAudioHandler(rtc)
Bases: SubscriptionProducerConsumer

Allows usage of RTCConnection as follows:

1.3. API Documentation 51

RTCBot Documentation, Release 0.2.4

r = RTCConnection()
audioSubscription = r.audio.subscribe()

r.audio.putSubscription(audioSubscription)

It uses the first incoming audio stream for subscribe(), and creates a single outgoing audio stream.

Subscribing to the tracks can be done

addTrack(subscription=None, sampleRate=48000, canSkip=True)
Allows to send multiple audio tracks in a single connection. Each call to putTrack adds the track to the
connection. For simple usage, where you only have a single audio stream, just use putSubscription - it
automatically calls putTrack for you.

close()

Cleans up and closes the object.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

52 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

offerToReceive(num=1)
Set the number of tracks that you can receive

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

onTrack(callback=None)
Callback that gets called each time a audio track is received:

1.3. API Documentation 53

RTCBot Documentation, Release 0.2.4

@r.audio.onTrack
def onTrack(track):

print(track)

The callback actually works exactly as a subscribe(), so you can do:

subscription = r.audio.onTrack()
await subscription.get()

Note that if you have more than one track, you will need to tell rtcbot how many tracks to prepare to receive:

r.audio.offerToReceive(2)

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

(continues on next page)

54 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

1.3. API Documentation 55

RTCBot Documentation, Release 0.2.4

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

56 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.connection.ConnectionVideoHandler(rtc)
Bases: SubscriptionProducerConsumer

Example
Allows usage of RTCConnection as follows:

r = RTCConnection()
frameSubscription = r.video.subscribe()

r.video.putSubscription(frameSubscription)

It uses the first incoming video stream for subscribe(), and creates a single outgoing video stream.

Subscribing to the tracks can be done

addTrack(frameSubscription=None, fps=None, canSkip=True)
Allows to send multiple video tracks in a single connection. Each call to putTrack adds the track to the
connection. For simple usage, where you only have a single video stream, just use putSubscription - it
automatically calls putTrack for you.

close()

Cleans up and closes the object.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

1.3. API Documentation 57

RTCBot Documentation, Release 0.2.4

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

offerToReceive(num=1)
Set the number of tracks that you can receive

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

58 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

onTrack(callback=None)
Callback that gets called each time a video track is received:

@r.video.onTrack
def onTrack(track):

print(track)

The callback actually works exactly as a subscribe(), so you can do:

subscription = r.video.onTrack()
await subscription.get()

Note that if you have more than one track, you will need to tell rtcbot how many tracks to prepare to receive:

r.video.offerToReceive(2)

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

1.3. API Documentation 59

RTCBot Documentation, Release 0.2.4

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

60 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

1.3. API Documentation 61

RTCBot Documentation, Release 0.2.4

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.connection.DataChannel(rtcDataChannel, json=True)
Bases: SubscriptionProducerConsumer

Represents a data channel. You can put_nowait messages into it, and subscribe to messages coming from it.

close()

Cleans up and closes the object.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

62 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

property name

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

1.3. API Documentation 63

RTCBot Documentation, Release 0.2.4

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

64 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

1.3. API Documentation 65

RTCBot Documentation, Release 0.2.4

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

66 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.connection.RTCConnection(defaultChannelOrdered=True, loop=None,
rtcConfiguration=aiortc.RTCConfiguration)

Bases: SubscriptionProducerConsumer

addDataChannel(name, ordered=True)
Adds a data channel to the connection. Note that the RTCConnection adds a “default” channel automati-
cally, which you can subscribe to directly.

property audio

Convenience function - you can subscribe to it to get audio once a stream is received

close()

If the loop is running, returns a future that will close the connection. Otherwise, runs the loop temporarily
to complete closing.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

1.3. API Documentation 67

RTCBot Documentation, Release 0.2.4

getDataChannel(name)
Returns the data channel with the given name. Please note that the “default” channel is considered special,
and is not returned.

async getLocalDescription(description=None)
Gets the description to send on. Creates an initial description if no remote description was passed, and
creates a response if a remote was given,

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onDataChannel(callback=None)
Acts as a subscriber. . .

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

68 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

1.3. API Documentation 69

RTCBot Documentation, Release 0.2.4

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

send(msg)
Send is an alias for put_nowait - makes it easier for people new to rtcbot to understand what is going on

async setRemoteDescription(description)

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

70 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

1.3. API Documentation 71

RTCBot Documentation, Release 0.2.4

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

property video

Convenience function - you can subscribe to it to get video frames once they show up

1.3.2 Websocket

API

class rtcbot.websocket.Websocket(url_or_request, json=True, loop=None)
Bases: SubscriptionProducerConsumer

Wraps an aiohttp websocket to have an API matching RTCBot. The websocket can be given either a URL to
connect to:

ws = Websocket("http://localhost:8080/ws")
msg = await ws.get()

It can also be used in a server context to complete the connection:

@routes.get("/ws")
async def websocketHandler(request):

ws = Websocket(request)
msg = await ws.get()

Naturally, just like all other parts of rtcbot, you can also subscribe and putSubscription instead of manually calling
get and put_nowait.

close()

Cleans up and closes the object.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

72 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

1.3. API Documentation 73

RTCBot Documentation, Release 0.2.4

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

74 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

1.3. API Documentation 75

RTCBot Documentation, Release 0.2.4

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

76 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

1.3.3 Camera

The Camera API allows you to subscribe to video frames coming in from a webcam. To use this API, you will need to
either have OpenCV installed (for use with CVCamera and CVDisplay), have picamera installed to use PiCamera.

To install OpenCV on Ubuntu 18.04 or Raspbian Buster, use the following command:

sudo apt-get install python3-opencv

On Raspbian Stretch or older Ubuntu, you can install it with:

sudo apt-get install python-opencv

If using Windows or Mac, it is recommended that you use Anaconda, and install OpenCV from there.

If on a Raspberry Pi, you don’t need OpenCV at all to use the official Pi Camera.

CVCamera

The CVCamera uses a webcam connected to your computer, and gathers video frames using OpenCV:

import asyncio
from rtcbot import CVCamera, CVDisplay

camera = CVCamera()
display = CVDisplay()

display.putSubscription(camera)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

The frames are gathered as BGR numpy arrays, so you can perform any OpenCV functions you’d like on them. For
example, the following code shows the video in black and white:

import asyncio
from rtcbot import CVCamera, CVDisplay
import cv2

camera = CVCamera()
display = CVDisplay()

@camera.subscribe
def onFrame(frame):

bwframe = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
display.put_nowait(bwframe)

(continues on next page)

1.3. API Documentation 77

https://picamera.readthedocs.io/en/latest/api_camera.html#module-picamera
https://www.anaconda.com/distribution/#download-section

RTCBot Documentation, Release 0.2.4

(continued from previous page)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

Warning: There is currently an issue with threading in OpenCV that makes CVDisplay not work on Mac.

PiCamera

This allows you to use the official raspberry pi camera. You can use it in exactly the same way as the OpenCV camera
above, and it returns exactly the same data for the frame:

import asyncio
from rtcbot import PiCamera, CVDisplay

camera = PiCamera()
display = CVDisplay()

display.putSubscription(camera)

try:
asyncio.get_event_loop().run_forever()

finally:
camera.close()
display.close()

This means that if not using CVDisplay, you don’t even need OpenCV installed to stream from you raspberry pi.

PiCamera2

This allows you to use the official raspberry pi camera, with libcamera stack (legacy camera interface disabled). This
is default since Raspberry Pi OS bullseye, PiCamera2 also works with 64-bit OS. You can use the parameter hflip=1 to
flip the camera horizontally, vflip=1 to flip vertically, or both to rotate 180 degrees. You can use it in exactly the same
way as the OpenCV camera above, and it returns exactly the same data for the frame:

import asyncio
from rtcbot import PiCamera2, CVDisplay

camera = PiCamera2()
display = CVDisplay()

display.putSubscription(camera)

try:
asyncio.get_event_loop().run_forever()

finally:
(continues on next page)

78 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

camera.close()
display.close()

This means that if not using CVDisplay, you don’t even need OpenCV installed to stream from you raspberry pi.

API

class rtcbot.camera.CVCamera(width=320, height=240, cameranumber=0, fps=30,
preprocessframe=<function CVCamera.<lambda>>, loop=None)

Bases: ThreadedSubscriptionProducer

Uses a camera supported by OpenCV.

When initializing, can give an optional function which preprocesses frames as they are read, and returns the
modified versions thereof. Please note that the preprocessing happens synchronously in the camera capture
thread, so any processing should be relatively fast, and should avoid pure python code due to the GIL. Numpy
and openCV functions should be OK.

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

1.3. API Documentation 79

RTCBot Documentation, Release 0.2.4

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

80 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Subscribe to new frames as they come in. By default returns a MostRecentSubscription object, which can
be awaited to get the most recent frame, and skips missed frames.

Note that all subscribers get the same frame data numpy array, so if you are going to modify the values of
the array itself, please do so in a copy!:

Set up a camera and subscribe to new frames
cam = CVCamera()
subs = cam.subscribe()

async def mytask():

Wait for the next frame
myframe = await subs.get()

Do stuff with the frame

If you want to have a different subscription type, you can pass anything which has a put_nowait method,
which is called each time a frame comes in:

subs = cam.subscribe(asyncio.Queue()) # asyncio queue has a put_nowait method
await subs.get()

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.camera.CVDisplay(name=None, loop=None)
Bases: BaseSubscriptionConsumer

Displays the frames in an openCV imshow window

1.3. API Documentation 81

RTCBot Documentation, Release 0.2.4

Warning: Due to an issue with threading in OpenCV on Mac, CVDisplay does not work on Mac.

close()

Cleans up and closes the object.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

82 Chapter 1. Documentation

https://github.com/opencv/opencv/issues/6039

RTCBot Documentation, Release 0.2.4

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

1.3. API Documentation 83

RTCBot Documentation, Release 0.2.4

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

class rtcbot.camera.PiCamera(rotation=0, **kwargs)
Bases: CVCamera

84 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Instead of using OpenCV camera support, uses the picamera library for direct access to the Raspberry Pi’s CSI
camera.

The interface is identical to CVCamera. When testing code on a desktop computer, it can be useful to have the
code automatically choose the correct camera:

try:
import picamera # picamera import will fail if not on pi
cam = PiCamera()

except ImportError:
cam = CVCamera()

This enables simple drop-in replacement between the two.

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

1.3. API Documentation 85

RTCBot Documentation, Release 0.2.4

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

86 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Subscribe to new frames as they come in. By default returns a MostRecentSubscription object, which can
be awaited to get the most recent frame, and skips missed frames.

Note that all subscribers get the same frame data numpy array, so if you are going to modify the values of
the array itself, please do so in a copy!:

Set up a camera and subscribe to new frames
cam = CVCamera()
subs = cam.subscribe()

async def mytask():

Wait for the next frame
myframe = await subs.get()

Do stuff with the frame

If you want to have a different subscription type, you can pass anything which has a put_nowait method,
which is called each time a frame comes in:

subs = cam.subscribe(asyncio.Queue()) # asyncio queue has a put_nowait method
await subs.get()

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.camera.PiCamera2(hflip=False, vflip=False, **kwargs)
Bases: CVCamera

Instead of using OpenCV camera support, uses the picamera2 library for direct access to the Raspberry Pi’s CSI
camera.

The interface is identical to CVCamera. When testing code on a desktop computer, it can be useful to have the
code automatically choose the correct camera:

try:
import picamera2 # picamera2 import will fail if not on pi
cam = PiCamera2()

except ImportError:
cam = CVCamera()

1.3. API Documentation 87

RTCBot Documentation, Release 0.2.4

This enables simple drop-in replacement between the two.

You can use the parameter hflip=True to flip the camera horizontally, vflip=True to flip vertically, or both to
rotate 180 degrees.

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

88 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

1.3. API Documentation 89

RTCBot Documentation, Release 0.2.4

subscribe(subscription=None)
Subscribe to new frames as they come in. By default returns a MostRecentSubscription object, which can
be awaited to get the most recent frame, and skips missed frames.

Note that all subscribers get the same frame data numpy array, so if you are going to modify the values of
the array itself, please do so in a copy!:

Set up a camera and subscribe to new frames
cam = CVCamera()
subs = cam.subscribe()

async def mytask():

Wait for the next frame
myframe = await subs.get()

Do stuff with the frame

If you want to have a different subscription type, you can pass anything which has a put_nowait method,
which is called each time a frame comes in:

subs = cam.subscribe(asyncio.Queue()) # asyncio queue has a put_nowait method
await subs.get()

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

1.3.4 Audio

Audio support is built upon the SoundCard library. The provided API gives a simple asyncio-based wrapper of the
library, which integrates directly with other components of rtcbot.

The library is made up of two objects: a Speaker and Microphone. The Microphone gathers audio at 48000 samples
per second, and gives the data in chunks of 1024 samples. The data is returned as a numpy array of shape (samples,
channels).

The speaker performs the reverse operation: it is given numpy arrays containing audio samples, and it plays them on
the computer’s default audio output.

90 Chapter 1. Documentation

https://soundcard.readthedocs.io/en/latest/

RTCBot Documentation, Release 0.2.4

Basic Example

With the following code, you can listen to yourself. Make sure to wear headphones, so you don’t get feedback:

import asyncio
from rtcbot import Microphone, Speaker

microphone = Microphone()
speaker = Speaker()

speaker.putSubscription(microphone)

try:
asyncio.get_event_loop().run_forever()

finally:
microphone.close()
speaker.close()

Naturally, the raw data can be manipulated with numpy. For example, the following code makes the output five times
as loud:

import asyncio
from rtcbot import Microphone, Speaker

microphone = Microphone()
speaker = Speaker()

@microphone.subscribe
def onData(data):

data = data * 5
if speaker.ready:

speaker.put_nowait(data)

try:
asyncio.get_event_loop().run_forever()

finally:
microphone.close()
speaker.close()

By checking if the speaker is ready, we don’t queue up audio while it is initializing (if the microphone starts returning
data before the speaker is prepared). This allows us to hear the audio with low latency. This effect was automatic in the
first example, because a subscription to microphone was not created until microphone.get was called by the speaker.

Warning: This is one of the fundamental differences between video and audio in RTCBot - dropping a video
frame is not a big deal, so the cameras automatically always return the most recent frame. However, dropping audio
results in weird audio glitches. To avoid this, audio is queued. This means that a subscription that is not actively
being read will keep queueing up data indefinitely. Make sure to unsubscribe the moment you stop using an audio
subscription, or your code will eventually run out of memory!

1.3. API Documentation 91

RTCBot Documentation, Release 0.2.4

API

class rtcbot.audio.Microphone(samplerate=48000, channels=None, blocksize=1024, device=None,
loop=None)

Bases: ThreadedSubscriptionProducer

Reads microphone data, and writes audio output. This class allows you to output sound while reading it.

Parameters

• samplerate (int,optional) – The sampling rate in Hz. Default is 48000.

• channels (int,list(int),optional) – The index of channel to record. Allows a list of
indices. Records on all available channels by default.

• blocksize (int,optional) – Records this many samples at a time. A lower block size
will give lower latency, but higher CPU usage.

• device (soundcard._Microphone) – The soundcard device to record from. Uses default
if not specified.

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

92 Chapter 1. Documentation

https://soundcard.readthedocs.io/en/latest/index.html#soundcard._Microphone
https://soundcard.readthedocs.io/en/latest/index.html#module-soundcard

RTCBot Documentation, Release 0.2.4

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

1.3. API Documentation 93

RTCBot Documentation, Release 0.2.4

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

94 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.audio.Speaker(samplerate=48000, channels=None, blocksize=1024, device=None, loop=None)
Bases: ThreadedSubscriptionConsumer

close()

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

Make sure to run close on exit, since sometimes Python has trouble exiting from multiple threads without
having them closed explicitly.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

1.3. API Documentation 95

RTCBot Documentation, Release 0.2.4

Note: If the error is not None, the object is considered crashed, and no longer processing data.

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

96 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

1.3. API Documentation 97

RTCBot Documentation, Release 0.2.4

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

1.3.5 Inputs

The Inputs API is built as a thin wrapper over the identically-named library (inputs). If you are having issues, check
whether they are coming from RTCBot or from the underlying library.

There are three input devices exposed. A Keyboard, a Mouse and a Gamepad.

Note: To get access to Keyboard and Mouse, you might need to either run as adminsitrator, or on Linux, add your user
to the input group.

Warning: Keyboard support is experimental - it only works in certain environments. You can try it, but don’t be
surprised if no events show up.

98 Chapter 1. Documentation

https://inputs.readthedocs.io/en/latest/index.html

RTCBot Documentation, Release 0.2.4

Mouse

To get mouse events, you can run the following:

import asyncio
from rtcbot import Mouse

m = Mouse()

@m.subscribe
def onkey(key):

print(key)

try:
asyncio.get_event_loop().run_forever()

finally:
m.close()

This code gives the following results:

{'timestamp': 1552629001.833567, 'code': 'REL_X', 'state': 1, 'event': 'Relative'}
{'timestamp': 1552629001.833567, 'code': 'REL_Y', 'state': 1, 'event': 'Relative'}
{'timestamp': 1552629001.841518, 'code': 'REL_X', 'state': 2, 'event': 'Relative'}
{'timestamp': 1552629001.889522, 'code': 'REL_X', 'state': 2, 'event': 'Relative'}
{'timestamp': 1552629001.905525, 'code': 'REL_X', 'state': 3, 'event': 'Relative'}
{'timestamp': 1552629001.905525, 'code': 'REL_Y', 'state': -2, 'event': 'Relative'}
{'timestamp': 1552629002.16957, 'code': 'REL_X', 'state': 2, 'event': 'Relative'}
{'timestamp': 1552629004.233588, 'code': 'MSC_SCAN', 'state': 589825, 'event': 'Misc'}
{'timestamp': 1552629004.233588, 'code': 'BTN_LEFT', 'state': 1, 'event': 'Key'}
{'timestamp': 1552629004.361593, 'code': 'MSC_SCAN', 'state': 589825, 'event': 'Misc'}
{'timestamp': 1552629004.361593, 'code': 'BTN_LEFT', 'state': 0, 'event': 'Key'}
{'timestamp': 1552629005.361596, 'code': 'MSC_SCAN', 'state': 589826, 'event': 'Misc'}
{'timestamp': 1552629005.361596, 'code': 'BTN_RIGHT', 'state': 1, 'event': 'Key'}

The REL_X and REL_Y codes refer to relative mouse motion. Here, the mouse started by moving 1 unit to the right
(REL_X).

Gamepad

The Gamepad usually refers to a wired Xbox controller. Connect it to your computer through USB. To use the gamepad,
you probably don’t need administrator access:

import asyncio
from rtcbot import Gamepad

g = Gamepad()

@g.subscribe
def onkey(key):

print(key)

try:
asyncio.get_event_loop().run_forever()

(continues on next page)

1.3. API Documentation 99

RTCBot Documentation, Release 0.2.4

(continued from previous page)

finally:
g.close()

This code gives the following results:

{'timestamp': 1552629513.7494, 'code': 'BTN_SOUTH', 'state': 1, 'event': 'Key'}
{'timestamp': 1552629513.7494, 'code': 'ABS_Y', 'state': -1, 'event': 'Absolute'}
{'timestamp': 1552629513.969403, 'code': 'BTN_SOUTH', 'state': 0, 'event': 'Key'}
{'timestamp': 1552629517.089424, 'code': 'ABS_X', 'state': -253, 'event': 'Absolute'}
{'timestamp': 1552629517.097385, 'code': 'ABS_X', 'state': -64, 'event': 'Absolute'}
{'timestamp': 1552629517.109388, 'code': 'ABS_X', 'state': -211, 'event': 'Absolute'}
{'timestamp': 1552629517.117379, 'code': 'ABS_X', 'state': -242, 'event': 'Absolute'}

The resulting events are all button presses and joystick control. For example, ABS_X here refers to the horizontal
position of the right joystick on a wired Xbox controller.

API

class rtcbot.inputs.Gamepad(eventFilter=<function <lambda>>, loop=None)
Bases: InputDevice

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription

(continues on next page)

100 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

1.3. API Documentation 101

RTCBot Documentation, Release 0.2.4

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)

(continues on next page)

102 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

while True:
data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.inputs.InputDevice(device, eventFilter=<function <lambda>>, loop=None)
Bases: ProcessSubscriptionProducer

A thin wrapper over inputs, which permits getting events in an asynchronous manner.

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

1.3. API Documentation 103

RTCBot Documentation, Release 0.2.4

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

104 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

1.3. API Documentation 105

RTCBot Documentation, Release 0.2.4

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.inputs.Keyboard(eventFilter=<function <lambda>>, loop=None)
Bases: InputDevice

106 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

1.3. API Documentation 107

RTCBot Documentation, Release 0.2.4

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

108 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

1.3. API Documentation 109

RTCBot Documentation, Release 0.2.4

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.inputs.Mouse(eventFilter=<function <lambda>>, loop=None)
Bases: InputDevice

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()

(continues on next page)

110 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

1.3. API Documentation 111

RTCBot Documentation, Release 0.2.4

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

112 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

rtcbot.inputs.defaultFilter(x)

1.3.6 Arduino

The Pi can control certain hardware directly, but a dedicated microcontroller can be better for real-time tasks like
controlling servos or certain sensors. The code here is dedicated to efficiently interfacing with microcontrollers, and
was tested to work with both Arduino and ESP32, but should work with any hardware with a serial port and C compiler.

You can connect a Pi to an Arduino using a USB cable (easiest), or, with the help of a level shifter, directly through the
Pi’s hardware serial pins (BCM 14 and 15, see here for details). The SerialConnection class is provided to easily send
and receive asynchronous commands as your robot is doing other processing.

Basic Communication

Assuming that you have connected the Pi to an Arduino with a USB cable, you can read and write to the serial port as
follows:

import asyncio
from rtcbot.arduino import SerialConnection

conn = SerialConnection("/dev/ttyAMA1")

async def sendAndReceive(conn):
conn.put_nowait("Hello world!")
while True:

msg = await conn.get().decode('ascii')
(continues on next page)

1.3. API Documentation 113

https://www.sparkfun.com/products/12009
https://pinout.xyz/pinout/pin8_gpio14
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3/

RTCBot Documentation, Release 0.2.4

(continued from previous page)

print(msg)
await asyncio.sleep(1)

asyncio.ensure_future(sendAndReceive(conn))

asyncio.get_event_loop().run_forever()

This sends a Hello World to the Arduino, and then reads the incoming serial messages line by line. Given the corre-
sponding Arduino code,

void setup() {
Serial.begin(115200);

}
void loop() {

if (Serial.available() > 0) {
Serial.print("I received: ");
Serial.println(Serial.read());

}
}

you should get the messages:

I received: H
I received: e
...

By default, SerialConnection reads line by line. To get raw input as it comes in, you can set the readFormat to None:

conn = SerialConnection("/dev/ttyAMA0",readFormat=None)

While reading/writing strings is useful for debugging, for speed and robustness, it is recommended that communication
with the Arduino be performed through C structs.

C Struct Messaging

When using a struct write format, a Python dict or tuple is directly encoded by the SerialConnection, and is read by the
Arduino in a way that the values are directly available for use.

As an example, we will write control messages to the Arduino. On the arduino, you need to create an associated struct
into which messages will be received:

#include <stdint.h>
typedef __attribute__ ((packed)) struct {

int16_t value1;
uint8_t value2;

} controlMessage;

The packed attribute ensures that the arduino’s struct is compatible with the encoding performed by Python.

From Python, you need to give the SerialConnection the structure shape in the format expected by Python’s structure
packing library. The arduino is little endian (each string should start with “<”). For example, we need to tell the
SerialConnection that first element of the struct is called “value1”, and is a 16 bit integer (the default int size on a
standard Arduino). This corresponds to the format character “h” (see structure packing table of format values).

114 Chapter 1. Documentation

https://docs.python.org/3/library/struct.html#format-strings
https://docs.python.org/3/library/struct.html#format-strings
https://docs.python.org/3/library/struct.html#format-characters

RTCBot Documentation, Release 0.2.4

conn = SerialConnection(
url="/dev/ttyAMA1",
writeFormat="<hB",
writeKeys=["value1","value2"]

)

With this format, you can send messages to the Arduino as dicts:

conn.put_nowait({"value1": -23,"value2": 101})

To decode them on the Arduino, you can read:

controlMessage msg;
Serial.read((char*)&msg,sizeof(msg));

Similarly, you can also send structs to Python from the Arduino:

typedef __attribute__ ((packed)) struct {
uint8_t sensorID;
uint16_t measurement;

} sensorMessage;

and:

sensorMessage msg = { .sensorID = 12, .measurement=123 };
Serial.write((char*)&msg,sizeof(msg));

You can then get the message directly as a Python dict:

conn = SerialConnection(
url="/dev/ttyAMA1",
readFormat="<BH",
readKeys=["sensorID","measurement"]

)

Run this in a coroutine
print(await conn.get())
{"sensorID": 12, "measurement": 123}

Full Example

The above can be demonstrated with a full example that sends and receives messages:

// The controlMessage comes from the pi
typedef __attribute__ ((packed)) struct {

uint16_t value1;
uint8_t value2;

} controlMessage;

// We write this back to the Pi
typedef __attribute__ ((packed)) struct {

uint8_t value1;
uint16_t value2;

(continues on next page)

1.3. API Documentation 115

RTCBot Documentation, Release 0.2.4

(continued from previous page)

} sensorMessage;

// These are the specific message instances
controlMessage cMsg;
sensorMessage sMsg;

void setup() {
Serial.begin(115200);

}
void loop() {

// Read the control message
Serial.readBytes((char*)&cMsg,sizeof(cMsg));

// set up the sensor message
sMsg.value1 = cMsg.value2;
sMsg.value2 = cMsg.value1;

// Send it back!
Serial.write((char*)&sMsg,sizeof(sMsg));

}

The above code echoes the values sent to it, with value1 and value2 switched. The python code to read it is:

import asyncio
from rtcbot.arduino import SerialConnection

loop = asyncio.get_event_loop()

sc = SerialConnection(
url="/dev/ttyAMA1",
writeFormat="<HB",
writeKeys=["value1", "value2"],
readFormat="<BH",
readKeys=["value1", "value2"],
loop=loop

)

async def sendAndReceive(sc):
while True:

sc.put_nowait({"value1": 1003,"value2": 2})
msg = await sc.get()
print("Received:",msg)
await asyncio.sleep(1)

asyncio.ensure_future(sendAndReceive(sc))

try:
loop.run_forever()

finally:
print("Exiting Event Loop")
loop.run_until_complete(loop.shutdown_asyncgens())

(continues on next page)

116 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

loop.close()

Running this program, you get:

Received: {"value1": 2,"value2": 1003}
Received: {"value1": 2,"value2": 1003}
Received: {"value1": 2,"value2": 1003}

API

class rtcbot.arduino.SerialConnection(url='/dev/ttyS0', readFormat='\n', writeFormat=None,
baudrate=115200, writeKeys=None, readKeys=None,
startByte=None, delayWriteStart=0, loop=None)

Bases: SubscriptionProducerConsumer

Handles sending and receiving commands to/from a a serial port. Has built-in support for sending structs to/from
Arduinos.

By default, reads and writes bytes from/to the serial port, splitting incoming messages by newline. To return raw
messages (without splitting), use readFormat=None.

If a writeFormat or readFormat is given, they are interpreted as struct format strings, and all incoming or
outgoing messages are assumed to conform to the given format. Without setting readKeys or writeKeys, the
messages are assumed to be tuples or lists.

When given a list of strings for readKeys or writeKeys, the write or read formats are assumed to come from ob-
jects with the given keys. Using these, a SerialConnection can read/write python dicts to the associated structure
formats.

close()

Cleans up and closes the object.

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

1.3. API Documentation 117

https://docs.python.org/3/library/struct.html#format-strings

RTCBot Documentation, Release 0.2.4

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

118 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

property ready

This is True when the class has been fully initialized, and is ready to process data:

1.3. API Documentation 119

RTCBot Documentation, Release 0.2.4

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

120 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

1.3. API Documentation 121

RTCBot Documentation, Release 0.2.4

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

1.3.7 Javascript

The Javascript API for RTCBot is provided for simple interoperability of RTCBot and the browser. Wherever possible,
the Javascript API mirrors the Python API, and can be used in exactly the same way.

Note: The Javascript API includes only a minimal subset of the functionality of RTCBot’s Python version. While this
may change in the future, many of the functions available in Python can’t be used in javascript.

Basic Usage

To start using the Javascript API, all you need to do is include the RTCBot.js file in a script tag, and use the following
javascript:

// The connection object
var conn = new rtcbot.RTCConnection();

// Here we set up the connection. We put it in an async function, since we will be
// waiting for results from the server (Promises).
async function connect() {

// Get the information needed to connect from the server to the browser
let offer = await conn.getLocalDescription();

// POST the information to the server, which will respond with the corresponding␣
→˓remote
// connection's description
let response = await fetch("/connect", {

method: "POST",
cache: "no-cache",
body: JSON.stringify(offer)

});

// Set the remote server's information
await conn.setRemoteDescription(await response.json());

}

connect(); // Run the async function in the background.

Next, to establish the connection with Python, you include the Python counterpart:

from aiohttp import web
routes = web.RouteTableDef()

from rtcbot import RTCConnection, getRTCBotJS
conn= None

@routes.get("/") # Serve the html file
async def index(request):

(continues on next page)

122 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

with open("index.html", "r") as f:
return web.Response(content_type="text/html", text=f.read())

Serve the RTCBot javascript library at /rtcbot.js
@routes.get("/rtcbot.js")
async def rtcbotjs(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

@routes.post("/connect")
async def connect(request):

global conn
clientOffer = await request.json()
conn = RTCConnection()

response = await conn.getLocalDescription(clientOffer)
return web.json_response(response)

async def cleanup(app=None):
if conn is not None:

await conn.close()

app = web.Application()
app.add_routes(routes)
app.on_shutdown.append(cleanup)
web.run_app(app, port=8080)

Python API

rtcbot.javascript.getRTCBotJS()

Returns the RTCBot javascript. This allows you to easily write self-contained scripts. You can serve it like this:

from rtcbot import getRTCBotJS
from aiohttp import web
routes = web.RouteTableDef()

@routes.get("/rtcbot.js")
async def rtcbotJS(request):

return web.Response(content_type="application/javascript", text=getRTCBotJS())

app = web.Application()
app.add_routes(routes)
web.run_app(app, port=8000)

If you are writing a more complex application, you might want to bundle RTCBot’s javascript with your code
using rollup or webpack instead of including it in script tags. To do this, you can install the js library separately
with npm, and bundle it however you’d like:

npm i rtcbot

1.3. API Documentation 123

RTCBot Documentation, Release 0.2.4

Javascript API

class RTCConnection(defaultOrdered=true, rtcConfiguration)
RTCConnection mirrors the Python RTCConnection in API. Whatever differences in functionality that may exist
can be considered bugs unless explictly documented as such.

For detailed documentation, see the RTCConnection docs for Python.

Arguments

• defaultOrdered (*) –

• rtcConfiguration (*) – is the configuration given to the RTC connection

RTCConnection.audio

The audio element allows you to directly access audio streams. The following functions are available:

• subscribe(): Unlike in Python, this is given a callback which is called once, when the stream

is received.

conn.audio.subscribe(function(stream) {
document.querySelector("audio").srcObject = stream;

});

• putSubscription(): Allows to send a video stream:

let streams = await navigator.mediaDevices.getUserMedia({audio: true,␣
→˓video: false});
conn.audio.putSubscription(streams.getAudioTracks()[0]);

RTCConnection.video

Just like in the Python version, the video element allows you to directly access video streams. The following
functions are available:

• subscribe(): Unlike in Python, this is given a callback which is called once, when the stream

is received.

conn.video.subscribe(function(stream) {
document.querySelector("video").srcObject = stream;

});

• putSubscription(): Allows to send a video stream:

let streams = await navigator.mediaDevices.getUserMedia({audio: false,␣
→˓video: true});
conn.video.putSubscription(streams.getVideoTracks()[0]);

RTCConnection.close()

Close the connection

124 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

RTCConnection.getLocalDescription(description=null)
Sets up the connection. If no description is passed in, creates an initial description. If a description is given,
creates a response to it.

Arguments

• description (*) – (optional)

RTCConnection.put_nowait(msg)
Send the given data over a data stream.

Arguments

• msg (*) – Message to send

RTCConnection.setRemoteDescription(description)
When initializing a connection, this response reads the remote response to an initial description.

Arguments

• description (*) –

RTCConnection.subscribe(s)
Subscribe to incoming messages. Unlike in the Python libary, which can accept a wide variety of inputs,
the subscribe function in javascript only allows simple callbacks.

Arguments

• s (*) – A function to call each time a new message comes in

class Keyboard()

Keyboard subscribes to keypresses on the keyboard. Internally, the keydown and keyup events are used to get
keys.

var kb = new rtcbot.Keyboard();
kb.subscribe(function(event) {
console.log(event); // prints the button and joystick events

})

Keyboard.close()

Stop listening to keypresses

Keyboard.subscribe(s)
Subscribe to the events. Unlike in the Python libary, which can accept a wide variety of inputs, the subscribe
function in javascript only allows simple callbacks.

Arguments

• s (*) – A function to call on each event

class Gamepad()

Gamepad allows you to use an Xbox controller. It uses the browser Gamepad API, polling at 10Hz by default.
Use rtcbot.setGamepadRate to change polling frequency.

You must plug in the gamepad, and press a button on it for it to be recognized by the browser:

var gp = new rtcbot.Gamepad();
gp.subscribe(function(event) {
console.log(event); // prints the button and joystick events

})

1.3. API Documentation 125

RTCBot Documentation, Release 0.2.4

Gamepad.close()

Stop polling the gamepad.

Gamepad.subscribe(s)
Subscribe to the events. Unlike in the Python libary, which can accept a wide variety of inputs, the subscribe
function in javascript only allows simple callbacks.

Arguments

• s (*) – A function to call on each event

setGamepadRate(rate)
Gamepads are polled at 10Hz by default, so that when moving joystick axes a connection is not immediately
flooded with every miniscule joystick change. To modify this behavior, you can set the rate in Hz, allowing lower
latency, with the downside of potentially lots of data suddenly overwhelming a connection.

Arguments

• rate (number) – Rate at which gamepad is polled in Hz

class Queue()

A simple async queue. Useful for converting callbacks into async operations. The API imitates Python’s asyn-
cio.Queue, making it easy to avoid callback hell

1.3.8 Subscriptions

The subscriptions available here are quick solutions to common problems that come up with the async pro-
ducer/consumer model.

API

class rtcbot.subscriptions.CallbackSubscription(callback, loop=None, runDirect=False)
Bases: object

Sometimes you don’t want to await anything, you just want to run a callback upon an event. The CallbackSub-
scription allows you to do precisely that:

@CallbackSubscription
async def mycallback(value):

print(value)

cam = CVCamera()
cam.subscribe(mycallback)

Note: This is no longer necessary: you can just pass a function to subscribe, and it will automatically be wrapped
in a CallbackSubscription.

put_nowait(element)

class rtcbot.subscriptions.DelayedSubscription(SubscriptionWriter, subscription=None)
Bases: object

In some instances, you want to subscribe to something, but don’t actually want to start gathering the data until
the data is needed.

126 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

This is especially common in something like audio streaming: if you were to subscribe to an audio stream right
now, and get() the data only after a certain time, then there would be a large audio delay, because by default the
audio subscription queues data.

This is common in the audio of an RTCConnection, where get is called only once the connection is established:

s = Microphone().subscribe()
conn = RTCConnection()
conn.audio.putSubscription(s) # Big audio delay!

Instead, what you want to do is delay subscribing until get is called the first time, which would wait until the
connection is ready to start sending data:

s = DelayedSubscription(Microphone())
conn = RTCConnection()
conn.audio.putSubscription(s) # Calls Microphone.subscribe() on first get()

One caveat is that calling unsubscribe will not work on the DelayedSubscription - you must use unsubscribe as
given in the DelayedSubscription! That means:

m = Microphone()
s = DelayedSubscription(m)
m.unsubscribe(s) # ERROR!

s.unsubscribe() # correct!

Parameters

• SubscriptionWriter (BaseSubscriptionWriter) – An object with a subscribe method

• subscription ((optional)) – The subscription to subscribe. If given, calls Subscription-
Writer.subscribe(subscription)

async get()

unsubscribe()

class rtcbot.subscriptions.EventSubscription

Bases: object

This is a subscription that is fired once - upon the first insert.

async get()

put_nowait(value)

class rtcbot.subscriptions.GetterSubscription(callback)
Bases: object

You might have a function which behaves like a get(), but it is just a function. The GetterSubscription is a wrapper
that calls your function on get():

@GetterSubscription
async def myfunction():

asyncio.sleep(1)
return "hello!"

(continues on next page)

1.3. API Documentation 127

RTCBot Documentation, Release 0.2.4

(continued from previous page)

await myfunction.get()
returns "hello!"

async get()

class rtcbot.subscriptions.MostRecentSubscription

Bases: object

The MostRecentSubscription always returns the most recently added element. If you get an element and imme-
diately call get again, it will wait until the next element is received, it will not return elements that were already
processed.

It is not threadsafe.

async get()

Gets the most recently added element

put_nowait(element)
Adds the given element to the subscription.

class rtcbot.subscriptions.RebatchSubscription(samples, axis=0, subscription=None)
Bases: object

In certain cases, data comes with a suboptimal batch size. For example, audio coming from an RTCConnection
is always of shape (960,2), with 2 channels, and 960 samples per batch. This subscription allows you to change
the frame size by mixing and matching batches. For example:

s = RebatchSubscription(samples=1024,axis=0)
s.put_nowait(np.zeros((960,2)))

asyncio.TimeoutError - the RebatchSubscription does
not have enough data to create a batch of size 1024
rebatched = await asyncio.wait_for(s.get(),timeout=5)

After adding another batch of 960, get returns a frame of goal shape
s.put_nowait(np.zeros((960,2)))
rebatched = await s.get()
print(rebatched.shape) # (1024,2)

The RebatchSubscription takes samples from the second data frame’s dimension 1 to create a new batch of the
correct size.

async get()

put_nowait(data)

128 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

1.3.9 Base

RTCBot is heavily based upon the concept of data producers, and data consumers. To that end, all classes that produce
data, such as cameras, microphones, and incoming data streams are considered producers, and all classes that consume
data, such as speakers, video displays or outgoing data streams are considered consumers.

This section of the documentation is built to describe the backend base classes upon which all of the data streams are
based, and to help you create your own producers and consumers with an API compatible with the rest of RTCBot.

There are 3 main base classes types

1) BaseSubscriptionProducer and BaseSubscriptionConsumer

2) ThreadedSubscriptionProducer and ThreadedSubscriptionConsumer

3) MultiprocessSubscriptionProducer

The three types allow setting up your own data acquisition and processing code loops without needing to worry about
the asyncio loop (Threaded) or even the GIL (Multiprocess), but also come with the downside of increasing complexity
and communication overhead.

API

Note: Unlike elsewhere in RTCBot’s documentation, inherited members are not shown here, so some functions
available from a class might be hidden if they were defined in a parent.

class rtcbot.base.events.baseEventHandler(logger)
Bases: object

This class handles base events

_setError(value)
Sets the error state of the class to an error that was caught while processing data.

After the error is set, the class is assumed to be in a closed state, meaning that any background processes
either crashed or were shut down.

Warning: Only call this if you are subclassing baseEventHandler.

_setReady(value=True)
Sets the ready to a given value, and fires all subscriptions created with onReady(). Call this when your
producer/consumer is fully initialized.

Warning: Only call this if you are subclassing baseEventHandler.

close()

Fires the onClose event

property closed

Returns whether the object was closed. This includes both thrown exceptions, and clean exits.

1.3. API Documentation 129

RTCBot Documentation, Release 0.2.4

property error

If there is an error that causes the underlying process to crash, this property will hold the actual Exception
that was thrown:

if myobject.error is not None:
print("Oh no! There was an error:",myobject.error)

This property is offered for convenience, but usually, you will want to subscribe to the error by using
onError(), which will notify your app when the issue happens.

Note: If the error is not None, the object is considered crashed, and no longer processing data.

onClose(subscription=None)
This is mainly useful for connections - they can be closed remotely. This allows handling the close event.

@myobj.onClose
def closeCallback():

print("Closed!)

Be aware that this is equivalent to explicitly awaiting the object:

await myobj

onError(subscription=None)
Since most data processing happens in the background, the object might encounter an error, and the data
processing might crash. If there is a crash, the object is considered dead, and no longer gathering data.

To catch these errors, when an unhandled exception happens, the error event is fired, with the associated
Exception. This function allows you to subscribe to these events:

@myobj.onError
def error_happened(err):

print("Crap, stuff just crashed: ",err)

The onError() function behaves in the same way as a subscribe(), which means that you can pass it a
coroutine, or even directly await it:

err = await myobj.onError()

onReady(subscription=None)
Creating the class does not mean that the object is ready to process data. When created, the object starts
an initialization procedure in the background, and once this procedure is complete, and any spawned back-
ground workers are ready to process data, it fires a ready event.

This function allows you to listen for this event:

@myobj.onReady
def readyCallback():

print("Ready!)

The function works in exactly the same way as a subscribe(), meaning that you can pass it a coroutine,
or even await it directly:

130 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

await myobj.onReady()

Note: The object will automatically handle any subscriptions or inserts that happen while it is initializing,
so you generally don’t need to worry about the ready event, unless you need exact control.

property ready

This is True when the class has been fully initialized, and is ready to process data:

if not myobject.ready:
print("Not ready to process data")

This property is offered for convenience, but if you want to be notifed when ready to process data, you
will want to use the onReady() function, which will allow you to set up a callback/coroutine to wait until
initialized.

Note: You usually don’t need to check the ready state, since all functions for getting/putting data will work
even if the class is still starting up in the background.

class rtcbot.base.events.threadedEventHandler(logger, loop=None)
Bases: baseEventHandler

A threadsafe version of baseEventHandler.

_setError(err)
Threadsafe version of baseEventHandler._setError().

_setReady(value)
Threadsafe version of baseEventHandler._setReady().

class rtcbot.base.base.BaseSubscriptionConsumer(directPutSubscriptionType=<class
'asyncio.queues.Queue'>, logger=None)

Bases: baseEventHandler

A base class upon which consumers of subscriptions can be built.

The BaseSubscriptionConsumer class handles the logic of switching incoming subscriptions mid-stream and all
the other annoying stuff.

async _get()

Warning: Only call this if you are subclassing BaseSubscriptionConsumer.

This function is to be awaited by a subclass to get the next datapoint from the active subscription. It
internally handles the subscription for you, and transparently manages the user switching a subscription
during runtime:

myobj.putSubscription(x)
await self._get() waits on next datapoint from x
myobj.putSubscription(y)
_get transparently switched to waiting on y

1.3. API Documentation 131

RTCBot Documentation, Release 0.2.4

Raises
SubscriptionClosed – If close() was called, this error is raised, signalling your data
processing function to clean up and exit.

Returns
The next datapoint that was put or subscribed to from the currently active subscription.

close()

Cleans up and closes the object.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

put_nowait(data)
This function allows you to directly send data to the object, without needing to go through a subscription:

while True:
data = get_data()
myobj.put_nowait(data)

The put_nowait() method is the simplest way to process a new chunk of data.

Note: If there is currently an active subscription initialized through putSubscription(), it is immedi-
ately stopped, and the object waits only for put_nowait():

myobj.putSubscription(s)
myobj.put_nowait(mydata) # unsubscribes from s

assert myobj.subscription is None

132 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

stopSubscription()

Stops reading the current subscription:

q = asyncio.Queue()
myobj.putSubscription(q)

assert myobj.subscription == q

myobj.stopSubscription()

assert myobj.subscription is None

You can then subscribe again (or put_nowait)
myobj.putSubscription(q)
assert myobj.subscription == q

The object is not affected, other than no longer listening to the subscription, and not processing new data
until something is inserted.

property subscription

Returns the currently active subscription:

q = asyncio.Queue()
myobj.putSubscription(q)
assert myobj.subscription == q

myobj.stopSubscription()
assert myobj.subscription is None

myobj.put_nowait(data)
assert myobj.subscription is None

class rtcbot.base.base.BaseSubscriptionProducer(defaultSubscriptionClass=<class
'asyncio.queues.Queue'>,
defaultAutosubscribe=False, logger=None)

Bases: baseEventHandler

This is a base class upon which all things that emit data in RTCBot are built.

This class offers all the machinery necessary to keep track of subscriptions to the incoming data. The most im-
portant methods from a user’s perspective are the subscribe(), get() and close() functions, which manage
subscriptions to the data, and finally close everything.

From an subclass’s perspective, the most important pieces are the _put_nowait() method, and the
_shouldClose and _ready attributes.

Once the subclass is ready, it should set _ready to True, and when receiving data, it should call _put_nowait()
to insert it. Finally, it should either listen to _shouldClose or override the close method to stop producing data.

1.3. API Documentation 133

RTCBot Documentation, Release 0.2.4

Example

A sample basic class that builds on the BaseSubscriptionProvider:

class MyProvider(BaseSubscriptionProvider):
def __init__(self):

super().__init__()

Add data in the background
asyncio.ensure_future(self._dataProducer)

async def _dataProducer(self):
self._ready = True
while not self._shouldClose:

data = await get_data_here()
self._put_nowait(data)

self._ready = False
def close():

super().close()
stop_gathering_data()

you can now subscribe to the data
s = MyProvider().subscribe()

Parameters

• defaultSubscriptionClass (optional) – The subscription type to return by default if
subscribe() is called without arguments. By default, it uses asyncio.Queue:

sp = SubscriptionProducer(defaultSubscriptionClass=asyncio.Queue)
q = sp.subscribe()

q is asyncio.Queue # True

• defaultAutosubscribe (bool,optional) – Calling get() creates a default subscrip-
tion on first time it is called. Sometimes the data is very critical, and you want the default
subscription to be created right away, so it never misses data. Be aware, though, if your de-
faultSubscriptionClass is asyncio.Queue, if get() is never called, such as when someone
just uses subscribe(), it will just keep piling up queued data! To avoid this, it is False by
default.

• logger (optional) – Your class logger - it gets a child of this logger for debug messages.
If nothing is passed, creates a root logger for your class, and uses a child for that.

• ready (bool,optional) – Your producer probably doesn’t need setup time, so this is set to
True automatically, which automatically sets _ready. If you need to do background tasks,
set this to False.

_close()

This function allows closing from the handler itself. Don’t call close() directly when implementing pro-
ducers or consumers. call _close instead.

_put_nowait(element)
Used by subclasses to add data to all subscriptions. This method internally calls all registered callbacks for
you, so you only need to worry about the single function call.

134 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

Warning: Only call this if you are subclassing BaseSubscriptionProducer.

_shouldClose

Whether or not close() was called, and the user wants the class to stop gathering data. Should only be
accessed from a subclass.

close()

Shuts down the data gathering, and removes all subscriptions.

async get()

Behaves similarly to subscribe().get(). On the first call, creates a default subscription, and all subse-
quent calls to get() use that subscription.

If unsubscribe() is called, the subscription is deleted, so a subsequent call to get() will create a new
one:

data = await myobj.get() # Creates subscription on first call
data = await myobj.get() # Same subscription
myobj.unsubscribe()
data2 = await myobj.get() # A new subscription

The above code is equivalent to the following:

defaultSubscription = myobj.subscribe()
data = await defaultSubscription.get()
data = await defaultSubscription.get()
myobj.unsubscribe(defaultSubscription)
newDefaultSubscription = myobj.subscribe()
data = await newDefaultSubscription.get()

subscribe(subscription=None)
Allows subscribing to new data as it comes in, returning a subscription (see Subscriptions):

s = myobj.subscribe()
while True:

data = await s.get()
print(data)

There can be multiple subscriptions active at the same time, each of which get identical data. Each call to
subscribe() returns a new, independent subscription:

s1 = myobj.subscribe()
s2 = myobj.subscribe()
while True:

assert await s1.get()== await s2.get()

This function can also be used as a callback:

@myobj.subscribe
def newData(data):

print("Got data:",data)

If passed an argument, it attempts to use the given callback/coroutine/subscription to notify of incoming
data.

1.3. API Documentation 135

RTCBot Documentation, Release 0.2.4

Parameters
subscription (optional) –

An optional existing subscription to subscribe to. This can be one of 3 things:

1) An object which has the method put_nowait (see Subscriptions):

q = asyncio.Queue()
myobj.subscribe(q)
while True:

data = await q.get()
print(data)

2) A callback function - this will be called the moment new data is inserted:

@myobj.subscribe
def myfunction(data):

print(data)

3) An coroutine callback - A future of this coroutine is created on each insert:

@myobj.subscribe
async def myfunction(data):

await asyncio.sleep(5)
print(data)

Returns

A subscription. If one was passed in, returns the passed in subscription:

q = asyncio.Queue()
ret = thing.subscribe(q)
assert ret==q

unsubscribe(subscription=None)
Removes the given subscription, so that it no longer gets updated:

subs = myobj.subscribe()
myobj.unsubscribe(subs)

If no argument is given, removes the default subscription created by get(). If none exists, then does nothing.

Parameters
subscription (optional) – Anything that was passed into/returned from subscribe().

unsubscribeAll()

Removes all currently active subscriptions, including the default one if it was intialized.

class rtcbot.base.base.NoClosedSubscription(awaitable)
Bases: object

NoClosedSubscription wraps a callback, and doesn’t pass forward SubscriptionClosed errors - it converts them
to asyncio.CancelledError. This allows exiting the application in a clean way.

exception rtcbot.base.base.SubscriptionClosed

Bases: Exception

This error is returned internally by _get() in all subclasses of BaseSubscriptionConsumer when close()
is called, and signals the consumer to shut down. For more detail, see BaseSubscriptionConsumer._get().

136 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

class rtcbot.base.base.SubscriptionConsumer(directPutSubscriptionType=<class
'asyncio.queues.Queue'>, logger=None)

Bases: BaseSubscriptionConsumer

class rtcbot.base.base.SubscriptionProducer(defaultSubscriptionClass=<class 'asyncio.queues.Queue'>,
defaultAutosubscribe=False, logger=None)

Bases: BaseSubscriptionProducer

class rtcbot.base.base.SubscriptionProducerConsumer(directPutSubscriptionType=<class
'asyncio.queues.Queue'>,
defaultSubscriptionType=<class
'asyncio.queues.Queue'>, logger=None,
defaultAutosubscribe=False)

Bases: BaseSubscriptionConsumer, BaseSubscriptionProducer

This base class represents an object which is both a producer and consumer. This is common with two-way
connections.

Here, you call _get() to consume the incoming data, and _put_nowait() to produce outgoing data.

_close()

This function allows closing from the handler itself. Don’t call close() directly when implementing pro-
ducers or consumers. call _close instead.

close()

Cleans up and closes the object.

class rtcbot.base.thread.ThreadedSubscriptionConsumer(directPutSubscriptionType=<class
'asyncio.queues.Queue'>, logger=None,
loop=None, daemonThread=True)

Bases: BaseSubscriptionConsumer, threadedEventHandler

close()

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

Make sure to run close on exit, since sometimes Python has trouble exiting from multiple threads without
having them closed explicitly.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

1.3. API Documentation 137

RTCBot Documentation, Release 0.2.4

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

class rtcbot.base.thread.ThreadedSubscriptionProducer(defaultSubscriptionType=<class
'asyncio.queues.Queue'>, logger=None,
loop=None, daemonThread=True)

Bases: BaseSubscriptionProducer, threadedEventHandler

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when exiting the program.

class rtcbot.base.multiprocess.ProcessSubscriptionConsumer(directPutSubscriptionType=<class
'asyncio.queues.Queue'>,
logger=None, loop=None,
daemonProcess=True, joinTimeout=1)

Bases: BaseSubscriptionConsumer

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1
(continues on next page)

138 Chapter 1. Documentation

RTCBot Documentation, Release 0.2.4

(continued from previous page)

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

class rtcbot.base.multiprocess.ProcessSubscriptionProducer(defaultSubscriptionType=<class
'asyncio.queues.Queue'>,
logger=None, loop=None,
daemonProcess=True, joinTimeout=1)

Bases: BaseSubscriptionProducer

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

class rtcbot.base.multiprocess.ProcessSubscriptionProducerConsumer(directPutSubscriptionType=<class
'asyncio.queues.Queue'>,
defaultSubscription-
Type=<class
'asyncio.queues.Queue'>,
logger=None,
defaultAutosubscribe=False,
loop=None,
daemonProcess=True,
joinTimeout=1)

Bases: BaseSubscriptionConsumer, BaseSubscriptionProducer

This base class represents an object which is both a producer and consumer, run as a separate process. This is
common with two-way connections. Here, you call _get() to consume the incoming data, and _put_nowait() to
produce outgoing data.

close()

Shuts down data gathering, and closes all subscriptions. Note that it is not recommended to call this in an
async function, since it waits until the background thread joins.

The object is meant to be used as a singleton, which is initialized at the start of your code, and is closed
when shutting down.

putSubscription(subscription)
Given a subscription, such that await subscription.get() returns successive pieces of data, keeps reading the
subscription forever:

q = asyncio.Queue() # an asyncio.Queue has a get() coroutine
myobj.putSubscription(q)

q.put_nowait(data)

Equivalent to doing the following in the background:

while True:
myobj.put_nowait(await q.get())

1.3. API Documentation 139

RTCBot Documentation, Release 0.2.4

You can replace a currently running subscription with a new one at any point in time:

q1 = asyncio.Queue()
myobj.putSubscription(q1)

assert myobj.subscription == q1

q2 = asyncio.Queue()
myobj.putSubscription(q2)

assert myobj.subscription == q2

class rtcbot.base.multiprocess.internalSubscriptionMessage(type, value)
Bases: object

140 Chapter 1. Documentation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

141

RTCBot Documentation, Release 0.2.4

142 Chapter 2. Indices and tables

PYTHON MODULE INDEX

r
rtcbot.arduino, 117
rtcbot.audio, 92
rtcbot.base, 126
rtcbot.base.base, 131
rtcbot.base.events, 129
rtcbot.base.multiprocess, 138
rtcbot.base.thread, 137
rtcbot.camera, 79
rtcbot.connection, 51
rtcbot.inputs, 100
rtcbot.javascript, 123
rtcbot.subscriptions, 126
rtcbot.websocket, 72

143

RTCBot Documentation, Release 0.2.4

144 Python Module Index

INDEX

Symbols
_close() (rtcbot.base.base.BaseSubscriptionProducer

method), 134
_close() (rtcbot.base.base.SubscriptionProducerConsumer

method), 137
_get() (rtcbot.base.base.BaseSubscriptionConsumer

method), 131
_put_nowait() (rtcbot.base.base.BaseSubscriptionProducer

method), 134
_setError() (rtcbot.base.events.baseEventHandler

method), 129
_setError() (rtcbot.base.events.threadedEventHandler

method), 131
_setReady() (rtcbot.base.events.baseEventHandler

method), 129
_setReady() (rtcbot.base.events.threadedEventHandler

method), 131
_shouldClose (rtcbot.base.base.BaseSubscriptionProducer

attribute), 135

A
addDataChannel() (rtcbot.connection.RTCConnection

method), 67
addTrack() (rtcbot.connection.ConnectionAudioHandler

method), 52
addTrack() (rtcbot.connection.ConnectionVideoHandler

method), 57
audio (rtcbot.connection.RTCConnection property), 67

B
baseEventHandler (class in rtcbot.base.events), 129
BaseSubscriptionConsumer (class in

rtcbot.base.base), 131
BaseSubscriptionProducer (class in

rtcbot.base.base), 133

C
CallbackSubscription (class in rtcbot.subscriptions),

126
close() (rtcbot.arduino.SerialConnection method), 117
close() (rtcbot.audio.Microphone method), 92
close() (rtcbot.audio.Speaker method), 95

close() (rtcbot.base.base.BaseSubscriptionConsumer
method), 132

close() (rtcbot.base.base.BaseSubscriptionProducer
method), 135

close() (rtcbot.base.base.SubscriptionProducerConsumer
method), 137

close() (rtcbot.base.events.baseEventHandler method),
129

close() (rtcbot.base.multiprocess.ProcessSubscriptionConsumer
method), 138

close() (rtcbot.base.multiprocess.ProcessSubscriptionProducer
method), 139

close() (rtcbot.base.multiprocess.ProcessSubscriptionProducerConsumer
method), 139

close() (rtcbot.base.thread.ThreadedSubscriptionConsumer
method), 137

close() (rtcbot.base.thread.ThreadedSubscriptionProducer
method), 138

close() (rtcbot.camera.CVCamera method), 79
close() (rtcbot.camera.CVDisplay method), 82
close() (rtcbot.camera.PiCamera method), 85
close() (rtcbot.camera.PiCamera2 method), 88
close() (rtcbot.connection.ConnectionAudioHandler

method), 52
close() (rtcbot.connection.ConnectionVideoHandler

method), 57
close() (rtcbot.connection.DataChannel method), 62
close() (rtcbot.connection.RTCConnection method), 67
close() (rtcbot.inputs.Gamepad method), 100
close() (rtcbot.inputs.InputDevice method), 103
close() (rtcbot.inputs.Keyboard method), 106
close() (rtcbot.inputs.Mouse method), 110
close() (rtcbot.websocket.Websocket method), 72
closed (rtcbot.arduino.SerialConnection property), 117
closed (rtcbot.audio.Microphone property), 92
closed (rtcbot.audio.Speaker property), 95
closed (rtcbot.base.events.baseEventHandler property),

129
closed (rtcbot.camera.CVCamera property), 79
closed (rtcbot.camera.CVDisplay property), 82
closed (rtcbot.camera.PiCamera property), 85
closed (rtcbot.camera.PiCamera2 property), 88

145

RTCBot Documentation, Release 0.2.4

closed (rtcbot.connection.ConnectionAudioHandler
property), 52

closed (rtcbot.connection.ConnectionVideoHandler
property), 57

closed (rtcbot.connection.DataChannel property), 62
closed (rtcbot.connection.RTCConnection property), 67
closed (rtcbot.inputs.Gamepad property), 100
closed (rtcbot.inputs.InputDevice property), 103
closed (rtcbot.inputs.Keyboard property), 107
closed (rtcbot.inputs.Mouse property), 110
closed (rtcbot.websocket.Websocket property), 72
ConnectionAudioHandler (class in rtcbot.connection),

51
ConnectionVideoHandler (class in rtcbot.connection),

57
CVCamera (class in rtcbot.camera), 79
CVDisplay (class in rtcbot.camera), 81

D
DataChannel (class in rtcbot.connection), 62
defaultFilter() (in module rtcbot.inputs), 113
DelayedSubscription (class in rtcbot.subscriptions),

126

E
error (rtcbot.arduino.SerialConnection property), 117
error (rtcbot.audio.Microphone property), 92
error (rtcbot.audio.Speaker property), 95
error (rtcbot.base.events.baseEventHandler property),

129
error (rtcbot.camera.CVCamera property), 79
error (rtcbot.camera.CVDisplay property), 82
error (rtcbot.camera.PiCamera property), 85
error (rtcbot.camera.PiCamera2 property), 88
error (rtcbot.connection.ConnectionAudioHandler

property), 52
error (rtcbot.connection.ConnectionVideoHandler

property), 57
error (rtcbot.connection.DataChannel property), 62
error (rtcbot.connection.RTCConnection property), 67
error (rtcbot.inputs.Gamepad property), 100
error (rtcbot.inputs.InputDevice property), 103
error (rtcbot.inputs.Keyboard property), 107
error (rtcbot.inputs.Mouse property), 110
error (rtcbot.websocket.Websocket property), 72
EventSubscription (class in rtcbot.subscriptions), 127

G
Gamepad (class in rtcbot.inputs), 100
Gamepad() (class), 125
Gamepad.close() (Gamepad method), 125
Gamepad.subscribe() (Gamepad method), 126
get() (rtcbot.arduino.SerialConnection method), 117
get() (rtcbot.audio.Microphone method), 92

get() (rtcbot.base.base.BaseSubscriptionProducer
method), 135

get() (rtcbot.camera.CVCamera method), 79
get() (rtcbot.camera.PiCamera method), 85
get() (rtcbot.camera.PiCamera2 method), 88
get() (rtcbot.connection.ConnectionAudioHandler

method), 52
get() (rtcbot.connection.ConnectionVideoHandler

method), 57
get() (rtcbot.connection.DataChannel method), 62
get() (rtcbot.connection.RTCConnection method), 67
get() (rtcbot.inputs.Gamepad method), 100
get() (rtcbot.inputs.InputDevice method), 104
get() (rtcbot.inputs.Keyboard method), 107
get() (rtcbot.inputs.Mouse method), 110
get() (rtcbot.subscriptions.DelayedSubscription

method), 127
get() (rtcbot.subscriptions.EventSubscription method),

127
get() (rtcbot.subscriptions.GetterSubscription method),

128
get() (rtcbot.subscriptions.MostRecentSubscription

method), 128
get() (rtcbot.subscriptions.RebatchSubscription

method), 128
get() (rtcbot.websocket.Websocket method), 72
getDataChannel() (rtcbot.connection.RTCConnection

method), 67
getLocalDescription()

(rtcbot.connection.RTCConnection method),
68

getRTCBotJS() (in module rtcbot.javascript), 123
GetterSubscription (class in rtcbot.subscriptions),

127

I
InputDevice (class in rtcbot.inputs), 103
internalSubscriptionMessage (class in

rtcbot.base.multiprocess), 140

K
Keyboard (class in rtcbot.inputs), 106
Keyboard() (class), 125
Keyboard.close() (Keyboard method), 125
Keyboard.subscribe() (Keyboard method), 125

M
Microphone (class in rtcbot.audio), 92
module

rtcbot.arduino, 117
rtcbot.audio, 92
rtcbot.base, 126
rtcbot.base.base, 131
rtcbot.base.events, 129

146 Index

RTCBot Documentation, Release 0.2.4

rtcbot.base.multiprocess, 138
rtcbot.base.thread, 137
rtcbot.camera, 79
rtcbot.connection, 51
rtcbot.inputs, 100
rtcbot.javascript, 123
rtcbot.subscriptions, 126
rtcbot.websocket, 72

MostRecentSubscription (class in
rtcbot.subscriptions), 128

Mouse (class in rtcbot.inputs), 110

N
name (rtcbot.connection.DataChannel property), 63
NoClosedSubscription (class in rtcbot.base.base), 136

O
offerToReceive() (rtcbot.connection.ConnectionAudioHandler

method), 52
offerToReceive() (rtcbot.connection.ConnectionVideoHandler

method), 58
onClose() (rtcbot.arduino.SerialConnection method),

118
onClose() (rtcbot.audio.Microphone method), 93
onClose() (rtcbot.audio.Speaker method), 96
onClose() (rtcbot.base.events.baseEventHandler

method), 130
onClose() (rtcbot.camera.CVCamera method), 80
onClose() (rtcbot.camera.CVDisplay method), 82
onClose() (rtcbot.camera.PiCamera method), 85
onClose() (rtcbot.camera.PiCamera2 method), 88
onClose() (rtcbot.connection.ConnectionAudioHandler

method), 53
onClose() (rtcbot.connection.ConnectionVideoHandler

method), 58
onClose() (rtcbot.connection.DataChannel method), 63
onClose() (rtcbot.connection.RTCConnection method),

68
onClose() (rtcbot.inputs.Gamepad method), 101
onClose() (rtcbot.inputs.InputDevice method), 104
onClose() (rtcbot.inputs.Keyboard method), 107
onClose() (rtcbot.inputs.Mouse method), 111
onClose() (rtcbot.websocket.Websocket method), 73
onDataChannel() (rtcbot.connection.RTCConnection

method), 68
onError() (rtcbot.arduino.SerialConnection method),

118
onError() (rtcbot.audio.Microphone method), 93
onError() (rtcbot.audio.Speaker method), 96
onError() (rtcbot.base.events.baseEventHandler

method), 130
onError() (rtcbot.camera.CVCamera method), 80
onError() (rtcbot.camera.CVDisplay method), 82
onError() (rtcbot.camera.PiCamera method), 86

onError() (rtcbot.camera.PiCamera2 method), 89
onError() (rtcbot.connection.ConnectionAudioHandler

method), 53
onError() (rtcbot.connection.ConnectionVideoHandler

method), 58
onError() (rtcbot.connection.DataChannel method), 63
onError() (rtcbot.connection.RTCConnection method),

68
onError() (rtcbot.inputs.Gamepad method), 101
onError() (rtcbot.inputs.InputDevice method), 104
onError() (rtcbot.inputs.Keyboard method), 107
onError() (rtcbot.inputs.Mouse method), 111
onError() (rtcbot.websocket.Websocket method), 73
onReady() (rtcbot.arduino.SerialConnection method),

118
onReady() (rtcbot.audio.Microphone method), 93
onReady() (rtcbot.audio.Speaker method), 96
onReady() (rtcbot.base.events.baseEventHandler

method), 130
onReady() (rtcbot.camera.CVCamera method), 80
onReady() (rtcbot.camera.CVDisplay method), 82
onReady() (rtcbot.camera.PiCamera method), 86
onReady() (rtcbot.camera.PiCamera2 method), 89
onReady() (rtcbot.connection.ConnectionAudioHandler

method), 53
onReady() (rtcbot.connection.ConnectionVideoHandler

method), 58
onReady() (rtcbot.connection.DataChannel method), 63
onReady() (rtcbot.connection.RTCConnection method),

68
onReady() (rtcbot.inputs.Gamepad method), 101
onReady() (rtcbot.inputs.InputDevice method), 105
onReady() (rtcbot.inputs.Keyboard method), 108
onReady() (rtcbot.inputs.Mouse method), 111
onReady() (rtcbot.websocket.Websocket method), 73
onTrack() (rtcbot.connection.ConnectionAudioHandler

method), 53
onTrack() (rtcbot.connection.ConnectionVideoHandler

method), 59

P
PiCamera (class in rtcbot.camera), 84
PiCamera2 (class in rtcbot.camera), 87
ProcessSubscriptionConsumer (class in

rtcbot.base.multiprocess), 138
ProcessSubscriptionProducer (class in

rtcbot.base.multiprocess), 139
ProcessSubscriptionProducerConsumer (class in

rtcbot.base.multiprocess), 139
put_nowait() (rtcbot.arduino.SerialConnection

method), 119
put_nowait() (rtcbot.audio.Speaker method), 97
put_nowait() (rtcbot.base.base.BaseSubscriptionConsumer

method), 132

Index 147

RTCBot Documentation, Release 0.2.4

put_nowait() (rtcbot.camera.CVDisplay method), 83
put_nowait() (rtcbot.connection.ConnectionAudioHandler

method), 54
put_nowait() (rtcbot.connection.ConnectionVideoHandler

method), 59
put_nowait() (rtcbot.connection.DataChannel

method), 64
put_nowait() (rtcbot.connection.RTCConnection

method), 69
put_nowait() (rtcbot.subscriptions.CallbackSubscription

method), 126
put_nowait() (rtcbot.subscriptions.EventSubscription

method), 127
put_nowait() (rtcbot.subscriptions.MostRecentSubscription

method), 128
put_nowait() (rtcbot.subscriptions.RebatchSubscription

method), 128
put_nowait() (rtcbot.websocket.Websocket method), 74
putSubscription() (rtcbot.arduino.SerialConnection

method), 119
putSubscription() (rtcbot.audio.Speaker method), 96
putSubscription() (rtcbot.base.base.BaseSubscriptionConsumer

method), 132
putSubscription() (rtcbot.base.multiprocess.ProcessSubscriptionConsumer

method), 138
putSubscription() (rtcbot.base.multiprocess.ProcessSubscriptionProducerConsumer

method), 139
putSubscription() (rtcbot.base.thread.ThreadedSubscriptionConsumer

method), 137
putSubscription() (rtcbot.camera.CVDisplay

method), 83
putSubscription() (rtcbot.connection.ConnectionAudioHandler

method), 54
putSubscription() (rtcbot.connection.ConnectionVideoHandler

method), 59
putSubscription() (rtcbot.connection.DataChannel

method), 64
putSubscription() (rtcbot.connection.RTCConnection

method), 69
putSubscription() (rtcbot.websocket.Websocket

method), 74

Q
Queue() (class), 126

R
ready (rtcbot.arduino.SerialConnection property), 119
ready (rtcbot.audio.Microphone property), 93
ready (rtcbot.audio.Speaker property), 97
ready (rtcbot.base.events.baseEventHandler property),

131
ready (rtcbot.camera.CVCamera property), 80
ready (rtcbot.camera.CVDisplay property), 84
ready (rtcbot.camera.PiCamera property), 86

ready (rtcbot.camera.PiCamera2 property), 89
ready (rtcbot.connection.ConnectionAudioHandler

property), 55
ready (rtcbot.connection.ConnectionVideoHandler

property), 60
ready (rtcbot.connection.DataChannel property), 64
ready (rtcbot.connection.RTCConnection property), 69
ready (rtcbot.inputs.Gamepad property), 102
ready (rtcbot.inputs.InputDevice property), 105
ready (rtcbot.inputs.Keyboard property), 108
ready (rtcbot.inputs.Mouse property), 111
ready (rtcbot.websocket.Websocket property), 74
RebatchSubscription (class in rtcbot.subscriptions),

128
rtcbot.arduino

module, 117
rtcbot.audio

module, 92
rtcbot.base

module, 126
rtcbot.base.base

module, 131
rtcbot.base.events

module, 129
rtcbot.base.multiprocess

module, 138
rtcbot.base.thread

module, 137
rtcbot.camera

module, 79
rtcbot.connection

module, 51
rtcbot.inputs

module, 100
rtcbot.javascript

module, 123
rtcbot.subscriptions

module, 126
rtcbot.websocket

module, 72
RTCConnection (class in rtcbot.connection), 67
RTCConnection() (class), 124
RTCConnection.audio (RTCConnection attribute), 124
RTCConnection.close() (RTCConnection method),

124
RTCConnection.getLocalDescription() (RTC-

Connection method), 124
RTCConnection.put_nowait() (RTCConnection

method), 125
RTCConnection.setRemoteDescription() (RTC-

Connection method), 125
RTCConnection.subscribe() (RTCConnection

method), 125
RTCConnection.video (RTCConnection attribute), 124

148 Index

RTCBot Documentation, Release 0.2.4

S
send() (rtcbot.connection.RTCConnection method), 70
SerialConnection (class in rtcbot.arduino), 117
setGamepadRate() (built-in function), 126
setRemoteDescription()

(rtcbot.connection.RTCConnection method),
70

Speaker (class in rtcbot.audio), 95
stopSubscription() (rtcbot.arduino.SerialConnection

method), 120
stopSubscription() (rtcbot.audio.Speaker method),

97
stopSubscription() (rtcbot.base.base.BaseSubscriptionConsumer

method), 132
stopSubscription() (rtcbot.camera.CVDisplay

method), 84
stopSubscription() (rtcbot.connection.ConnectionAudioHandler

method), 55
stopSubscription() (rtcbot.connection.ConnectionVideoHandler

method), 60
stopSubscription() (rtcbot.connection.DataChannel

method), 65
stopSubscription() (rtcbot.connection.RTCConnection

method), 70
stopSubscription() (rtcbot.websocket.Websocket

method), 75
subscribe() (rtcbot.arduino.SerialConnection

method), 120
subscribe() (rtcbot.audio.Microphone method), 94
subscribe() (rtcbot.base.base.BaseSubscriptionProducer

method), 135
subscribe() (rtcbot.camera.CVCamera method), 81
subscribe() (rtcbot.camera.PiCamera method), 87
subscribe() (rtcbot.camera.PiCamera2 method), 89
subscribe() (rtcbot.connection.ConnectionAudioHandler

method), 55
subscribe() (rtcbot.connection.ConnectionVideoHandler

method), 60
subscribe() (rtcbot.connection.DataChannel method),

65
subscribe() (rtcbot.connection.RTCConnection

method), 70
subscribe() (rtcbot.inputs.Gamepad method), 102
subscribe() (rtcbot.inputs.InputDevice method), 105
subscribe() (rtcbot.inputs.Keyboard method), 108
subscribe() (rtcbot.inputs.Mouse method), 112
subscribe() (rtcbot.websocket.Websocket method), 75
subscription (rtcbot.arduino.SerialConnection prop-

erty), 121
subscription (rtcbot.audio.Speaker property), 98
subscription (rtcbot.base.base.BaseSubscriptionConsumer

property), 133
subscription (rtcbot.camera.CVDisplay property), 84

subscription (rtcbot.connection.ConnectionAudioHandler
property), 56

subscription (rtcbot.connection.ConnectionVideoHandler
property), 61

subscription (rtcbot.connection.DataChannel prop-
erty), 66

subscription (rtcbot.connection.RTCConnection prop-
erty), 71

subscription (rtcbot.websocket.Websocket property),
76

SubscriptionClosed, 136
SubscriptionConsumer (class in rtcbot.base.base), 137
SubscriptionProducer (class in rtcbot.base.base), 137
SubscriptionProducerConsumer (class in

rtcbot.base.base), 137

T
threadedEventHandler (class in rtcbot.base.events),

131
ThreadedSubscriptionConsumer (class in

rtcbot.base.thread), 137
ThreadedSubscriptionProducer (class in

rtcbot.base.thread), 138

U
unsubscribe() (rtcbot.arduino.SerialConnection

method), 121
unsubscribe() (rtcbot.audio.Microphone method), 95
unsubscribe() (rtcbot.base.base.BaseSubscriptionProducer

method), 136
unsubscribe() (rtcbot.camera.CVCamera method), 81
unsubscribe() (rtcbot.camera.PiCamera method), 87
unsubscribe() (rtcbot.camera.PiCamera2 method), 90
unsubscribe() (rtcbot.connection.ConnectionAudioHandler

method), 56
unsubscribe() (rtcbot.connection.ConnectionVideoHandler

method), 62
unsubscribe() (rtcbot.connection.DataChannel

method), 66
unsubscribe() (rtcbot.connection.RTCConnection

method), 71
unsubscribe() (rtcbot.inputs.Gamepad method), 103
unsubscribe() (rtcbot.inputs.InputDevice method), 106
unsubscribe() (rtcbot.inputs.Keyboard method), 109
unsubscribe() (rtcbot.inputs.Mouse method), 113
unsubscribe() (rtcbot.subscriptions.DelayedSubscription

method), 127
unsubscribe() (rtcbot.websocket.Websocket method),

76
unsubscribeAll() (rtcbot.arduino.SerialConnection

method), 122
unsubscribeAll() (rtcbot.audio.Microphone method),

95

Index 149

RTCBot Documentation, Release 0.2.4

unsubscribeAll() (rtcbot.base.base.BaseSubscriptionProducer
method), 136

unsubscribeAll() (rtcbot.camera.CVCamera method),
81

unsubscribeAll() (rtcbot.camera.PiCamera method),
87

unsubscribeAll() (rtcbot.camera.PiCamera2
method), 90

unsubscribeAll() (rtcbot.connection.ConnectionAudioHandler
method), 57

unsubscribeAll() (rtcbot.connection.ConnectionVideoHandler
method), 62

unsubscribeAll() (rtcbot.connection.DataChannel
method), 67

unsubscribeAll() (rtcbot.connection.RTCConnection
method), 72

unsubscribeAll() (rtcbot.inputs.Gamepad method),
103

unsubscribeAll() (rtcbot.inputs.InputDevice method),
106

unsubscribeAll() (rtcbot.inputs.Keyboard method),
110

unsubscribeAll() (rtcbot.inputs.Mouse method), 113
unsubscribeAll() (rtcbot.websocket.Websocket

method), 77

V
video (rtcbot.connection.RTCConnection property), 72

W
Websocket (class in rtcbot.websocket), 72

150 Index

	Documentation
	Installing RTCBot
	Raspbian
	Ubuntu
	Mac
	Windows

	Tutorials & Examples
	RTCBot Basics
	Asyncio Basics
	View a Video Feed
	Subscriptions
	Generalizing to Audio
	Summary
	Extra Notes

	WebRTC Basics
	Set up a Basic Server
	Talking to Python from the Browser
	A bit about WebRTC
	Connection Setup

	Sending JSON to Python and Back
	Summary
	Extra Notes

	Streaming Video
	Skeleton Code
	Streaming Video from Python
	Adding Audio
	Browser to Python
	Summary
	Extra Notes

	Keyboard & Xbox Controller
	Skeleton Code
	Keyboard
	Xbox Controller
	Remote Control
	Summary
	Extra Notes

	Connecting over 4G
	Server Code
	Remote Code
	rtcbot.dev
	If it doesn’t work over 4G
	Setup with Pion
	Setup with coTURN

	Summary
	Extra Notes

	Offloading Computation
	Python to Python Streaming

	Multiple Connections & Reconnecting
	Video Streaming Template
	The Connection Handler
	Summary

	Running Blocking Code
	A Common Issue
	Producing Data in Another Thread
	Consuming Data in Another Thread
	Summary

	API Documentation
	RTC Connection
	API

	Websocket
	API

	Camera
	CVCamera
	PiCamera
	PiCamera2
	API

	Audio
	Basic Example
	API

	Inputs
	Mouse
	Gamepad
	API

	Arduino
	Basic Communication
	C Struct Messaging
	Full Example
	API

	Javascript
	Basic Usage
	Python API
	Javascript API

	Subscriptions
	API

	Base
	API

	Indices and tables
	Python Module Index
	Index

